# Cryptic sexual populations account for genetic diversity and ecological success in a widely distributed, asexual fungus-growing ant 

Christian Rabeling ${ }^{\text {a,b,1 }}$, Omar Gonzales ${ }^{\text {a }}$, Ted R. Schultz ${ }^{\text {b }}$, Maurício Bacci, Jr. ${ }^{\text {c }}$, Marcos V. B. Garcia ${ }^{\text {d }}$, Manfred Verhaagh ${ }^{\text {e }}$, Heather D. Ishak ${ }^{\text {a }}$, and Ulrich G. Mueller ${ }^{\text {a }}$<br>${ }^{\text {a }}$ Section of Integrative Biology, University of Texas, Austin, TX 78712; ${ }^{\text {b }}$ Department of Entomology, National Museum of Natural History, Smithsonian  Amazônia Ocidental, Manaus, AM 69010-970, Brazil; and ${ }^{\text {e }}$ Staatliches Museum für Naturkunde Karlsruhe, 76133 Karlsruhe, Germany

Edited by Bert Hölldobler, Arizona State University, Tempe, AZ, and approved June 14, 2011 (received for review April 6, 2011)


#### Abstract

Sex and recombination are central processes in life generating genetic diversity. Organisms that rely on asexual propagation risk extinction due to the loss of genetic diversity and the inability to adapt to changing environmental conditions. The fungus-growing ant species Mycocepurus smithii was thought to be obligately asexual because only parthenogenetic populations have been collected from widely separated geographic localities. Nonetheless, M. smithii is ecologically successful, with the most extensive distribution and the highest population densities of any fungus-growing ant. Here we report that $M$. smithii actually consists of a mosaic of asexual and sexual populations that are nonrandomly distributed geographically. The sexual populations cluster along the Rio Amazonas and the Rio Negro and appear to be the source of independently evolved and widely distributed asexual lineages, or clones. Either apomixis or automixis with central fusion and low recombination rates is inferred to be the cytogenetic mechanism underlying parthenogenesis in M. smithii. Males appear to be entirely absent from asexual populations, but their existence in sexual populations is indicated by the presence of sperm in the reproductive tracts of queens. A phylogenetic analysis of the genus suggests that M. smithii is monophyletic, rendering a hybrid origin of asexuality unlikely. Instead, a mitochondrial phylogeny of sexual and asexual populations suggests multiple independent origins of asexual reproduction, and a divergence-dating analysis indicates that $M$. smithii evolved $0.5-1.65$ million years ago. Understanding the evolutionary origin and maintenance of asexual reproduction in this species contributes to a general understanding of the adaptive significance of sex.


Attini | clonality | Formicidae | thelytoky | mutualism

The vast majority of metazoans reproduces sexually, enjoying the benefits of genetic recombination (1-3) such as rapid adaptability to novel ecological conditions $(4,5)$ and the purging of deleterious mutations from their genomes $(6,7)$. However, relative to sexually reproducing organisms, an asexual female doubles its fitness by transmitting its entire genetic material to the next generation (8). Despite such obvious short-term fitness advantages, asexual organisms occur only sporadically throughout the tree of life and are predicted to be evolutionarily short-lived and doomed to early extinction (9-11). In contrast to the short-term advantages of asexuality, the adaptive value of sexuality, that is, genetic recombination, is expected to be of long-term benefit (2, 12-14). There remain in evolutionary biology significant unexplored questions about whether sexual reproduction is favored by natural selection over short evolutionary time spans and, if not, why sexual reproduction persists as the prevalent mode of reproduction, given that the selective benefits are deferred. Studying the origin and evolution of parthenogenetic lineages, and understanding how genetic diversity is generated and preserved in such lineages, is essential to answering these questions.

Asexual reproduction by females, or thelytokous parthenogenesis, has recently been reported in queens of the fungus-
growing ant Mycocepurus smithii in three geographically distant populations in Latin America: Puerto Rico (15), Panama (16), and Brazil (17). The widespread geographic distribution of asexuality and the complete absence of males from field collections and laboratory colonies suggested that M. smithii might be obligately asexual $(16,17)$, and one study proposed that asexuality in this species might be ancient (16). Among bees, wasps, and ants, thelytokous parthenogenesis has so far been observed in the Cape honey bee $(18,19)$ and in 12 distantly related species of ants $(17$, 20-23). Population-genetic studies of some species revealed a diversity of highly complex genetic systems, including different cytogenetic mechanisms used to produce workers and queens, facultative sexual reproduction, and clonal male lineages (23-27). Asexual eusocial Hymenoptera produce diploid offspring via meiotic parthenogenesis, or automixis, in which a limited amount of genetic variability is generated through fusion of sister nuclei (28-31). In contrast, mitotic parthenogenesis, or apomixis, in which offspring are genetic clones of their mothers, has not been demonstrated unambiguously in social insects.

Although many theoretical studies predict the costs and benefits of sex, little is known about the evolution of asexuality at the organism level (2). To study the origin and maintenance of parthenogenesis and to elucidate the mechanisms generating genetic diversity in parthenogenetic lineages, we investigated the evolutionary history of the asexual fungus-growing ant M. smithii. To test for obligate asexuality in M. smithii, we developed highly variable short tandem repeat (or microsatellite) markers and analyzed colonies from multiple populations across the species's broad range, extending from Mexico to Argentina and including some Caribbean islands $(32,33)$. To identify the genetic structure within and between populations of $M$. smithii and to infer the cytogenetic mechanism underlying parthenogenetic reproduction, we genotyped sterile workers and reproductive queens from 234 colonies. Clonality was inferred by genetic identity between nest mates. Controlled laboratory breeding experiments complemented our field observations. To test for a potential hybrid origin of parthenogenesis in M. smithii, we reconstructed a molecular phylogeny of the genus Mycocepurus. An additional finescaled mitochondrial phylogeny of asexual and sexual M. smithii populations was used to investigate whether asexuality arose

[^0]once or multiple times independently from sexually reproducing ancestors. Lastly, we performed a divergence-dating analysis to estimate the time span over which parthenogenesis has persisted in M. smithii, because asexuality was previously proposed to be of ancient origin.

## Results

Population-Genetic Analyses. A total of 1,930 M. smithii individuals from 234 colonies collected at 39 different localities in Latin America (Fig. 1 and Table S1) was genotyped at 12 variable microsatellite loci yielding 106 alleles (range: 2-15 alleles per locus). The number of alleles per locus per individual never exceeded two, indicating diploidy of females. Of the genotyped populations, $89.7 \%(n=35)$ showed population-genetic signatures of clonality, whereas $10.3 \%(n=4)$ showed an increase of unique multilocus genotypes, indicative of genetic recombination caused by sexual reproduction.
Asexual populations. A total of 1,647 individuals from 218 colonies in 35 populations exhibited genetic signatures of clonal reproduction. Asexual reproduction was characterized by sharing of repeated multilocus genotypes among individuals (Table S1), maximum deviation from random mating ( $F_{\text {IS }}=-1$; Table S2), and a low genotype-to-individual ratio (i.e., $\mathrm{G}: \mathrm{N}$ approaching 0 , whereas a G:N of 1 indicates that each individual is genetically distinct from another) (Table S1). To determine the number of independently evolved asexual lineages that arose at different localities from the sexual population, we estimated the probability that slightly different multilocus genotypes originated from separate sexual events ( $p_{\text {sex }}>0.01$ ) instead of arising from accumulated mutations or scoring errors ( $p_{\text {sex }}<0.01$ ). In addition, clonal diversity $(R)$ was calculated.
Among all M. smithii populations, 66 asexual genotypes were identified, 57 of them representing unique multilocus genotypes ( $R=0.86$; Tables S2 and S3). Five repeated multilocus genotypes were shared between 10 geographically proximate populations ( $\sim 10-40 \mathrm{~km}$ distance), and three unique genotypes were identi-


Fig. 1. Geographic distribution of sexual (stars) and asexual (circles) M. smithii populations. Localities refer to the sexual populations, distributed along the Rio Amazonas and the Rio Negro. Asexual populations are widely distributed in Latin America, ranging from northern Mexico to northern Argentina. Lines of longitude and latitude are separated by units of $5^{\circ}$.
fied in seven geographically distant populations ( $\sim 700-2,600 \mathrm{~km}$ distance; Tables S2 and S3). Calculating the probability that repeated multilocus genotypes from different populations originated from distinct sexual events revealed that identical multilocus genotypes belong to the same clonal lineage ( $p_{\text {sex }}<0.01$ ), indicating long-distance dispersal events of individuals from the same asexual lineage. No genetic variation was present within repeated multilocus genotypes ( $F_{\text {IS }}=-1$ ), but significant genetic variance was structured among them [analysis of molecular variance (AMOVA); $\left.F_{\mathrm{ST}}=0.624, P=0.01\right]$.
A comparison of the 57 unique multilocus genotypes revealed high frequencies of low genetic distances between genotypes, resulting in a bimodal frequency distribution of genetic distances and indicating the potential existence of mutations or scoring errors in clones (34). Eleven multilocus genotype pairs differed from one other genotype only by a single allele, reducing the number of asexual lineages that potentially originated from distinct sexual events to 46 ( $p_{\text {sex }}<0.01, R=0.69$ ). Further lowering the threshold and allowing two to six alleles to be shared among multilocus genotypes within an independently evolved clonal lineage, we identified $43(R=0.65)$ to minimally $38(R=0.57)$ independently evolved clonal lineages.
In 20 clonal populations, only a single multilocus genotype was encountered across different colonies. In 15 populations, two to maximally six multilocus genotypes coexisted at a single site (Table S1). In five populations, all or a subset of multilocus genotypes differed by one to six alleles, suggesting a single colonization event followed by diversification within clonal lineages due to the accumulation of mutations or scoring errors (Table S1). In contrast, 12 populations harbored multilocus genotypes differing by 7-15 alleles, indicating independent colonization events of these sites by distantly related clonal foundress queens. The highest diversity of clonal lineages ( $n=5$ ) was discovered at a Peruvian lowland rainforest site (Los Amigos).
Genetic uniformity across all loci within colonies suggests either mitotic parthenogenesis (apomixis) as the cytogenetic mechanism underlying thelytokous parthenogenesis in M. smithii or, alternatively, automixis with central fusion and low recombination rates. To trace the genotypes of reproductive individuals over multiple generations, we propagated M. smithii colonies in the laboratory for six consecutive generations and genotyped all 93 queens at the end of the experiment. All queens were genetically identical across generations, and transitions from a heterozygous locus in the mother to a homozygous locus in the offspring was not observed, as would be expected under automixis with central fusion. Interestingly, in field-collected populations in which 7 of the 11 multilocus genotype pairs differ by only a single allele and are identical at all other loci, we observed that one genotype was heterozygous at a given locus whereas the other was homozygous at the same locus. These transitions could indicate a switch from heterozygosity to homozygosity, as expected under automixis. Without knowing which one of these two is the maternal or the offspring genotype, however, it is not possible to distinguish between a transition from a heterozygous to a homozygous state caused by infrequent recombination or an accumulation of "somatic" mutations.
Recombining populations. Four Amazonian populations, distributed along the Rio Amazonas and the Rio Negro (Fig. 1), exhibited population-genetic signatures of genetic recombination, indicative of sexual reproduction (Tables S1 and S2). Among 283 genotyped individuals, 210 multilocus genotypes were identified, resulting in high genotype-to-individual ( $\mathrm{G}: \mathrm{N}$ ) ratios, ranging from 0.71 to 1 (Table S1). Recombinant populations were characterized by inbreeding indices diverging from genetic fixation ( $F_{\text {IS }}=-1$ ), ranging from 0.03 to -0.77 , and observed and expected heterozygosities were similar, as expected for populations under HardyWeinberg conditions (Table S2).
Because multiple colonies were collected from the Caldeirão population in Amazonas, Brazil (Fig. 1), we investigated this
population in detail to test for sexual reproduction. Genotyping of 243 individuals ( 234 workers, 5 queens, 4 spermatheca contents) revealed the existence of 173 unique multilocus genotypes, of which 132 multilocus genotypes were represented by single individuals whereas the remaining 41 multilocus genotypes were shared by 111 individuals. Among the shared multilocus genotypes, two or at most six nestmates carried identical genotypes. After removing identical genotypes from the dataset, we tested whether genotypes that differ by only a single allele are derived from distinct sexual events or from somatic mutations or scoring errors. Among those unique genotypes ( $n=173$ ), 55 multilocus genotypes likely belonged to the same clonal lineage ( $p_{\text {sex }}<0.01$ ), whereas 118 multilocus genotypes probably originated from distinct sexual events ( $p_{\text {sex }}>0.01$ ). This result indicates that $48.6 \%$ (118 multilocus genotypes out of 243 individuals) of the genotyped individuals result from sexual reproduction. Such a mixture of recombinant and clonal offspring within a single population suggests that sexual $M$. smithii queens either occasionally reproduce parthenogenetically or, alternatively, that a larger number of clonally reproducing queens coexists with sexual queens in the same colony. Facultative asexual reproduction by otherwise sexual queens seems more likely, however, given the high number of shared genotypes in the Caldeirão population $(n=41)$, contrasting with the low number of individuals sharing a multilocus genotype ( $n=2-6$ ). After excluding repeated genotypes, observed and expected heterozygosities were almost identical $\left(\mathrm{H}_{\mathrm{o}}=\right.$ $0.372, \mathrm{H}_{\mathrm{e}}=0.369$ ) and the inbreeding index was indicative of random mating $\left(F_{\text {IS }}=-0.009\right)$ (Table S2).

To directly test whether queens were fertilized, the abdomens of four (out of five) queens were dissected, revealing sperm-filled spermathecae and reproductively active ovaries. The spermatheca contents ( $n=4$ ) were identified as sperm under $200 \times$ magnification and subsequently genotyped. The sperm from each spermatheca were haploid at all loci, as expected from hymenopteran males developing from unfertilized, haploid eggs. In addition, haploidy at all loci indicates that the queens were singly mated. Furthermore, a subset of paternal alleles matched alleles found in workers which were not present in queens (Table S4). Hence, workers exhibited recombinant genotypes representing both maternal and paternal alleles. The combined evidence demonstrates that the M. smithii population from Caldeirão reproduces sexually and, although males have as far as we know never been collected, sperm content clearly reveals their existence.

The genetically recombinant population from São Gabriel da Cachoeira showed that all nestmates $(n=8)$ were genetically distinct ( $\mathrm{G}: \mathrm{N}=1, \mathrm{H}_{\mathrm{o}}=0.365, \mathrm{H}_{\mathrm{e}}=0.315, F_{\mathrm{IS}}=-0.172$ ), consistent with strict sexual reproduction (Tables S1 and S2). However, in the Belém colony ( $\mathrm{G}: \mathrm{N}=0.96, \mathrm{H}_{\mathrm{o}}=0.451, \mathrm{H}_{\mathrm{e}}=$ $0.466, F_{\text {IS }}=0.034$ ) and the Parintins colony ( $\mathrm{G}: \mathrm{N}=0.71, \mathrm{H}_{\mathrm{o}}=$ $0.650, \mathrm{H}_{\mathrm{e}}=0.398, F_{\text {IS }}=-0.773$ ), few individuals shared a multilocus genotype, suggesting mixed sexual and parthenogenetic reproduction in these populations.

Only a single clonal lineage (from Trinidad) shared a multilocus genotype with the sexual population from São Gabriel da Cachoeira, suggesting that sexual lineages may continuously spawn asexual lineages. To further explore whether sexual populations give rise to asexual lineages, we analyzed the genetic structure of unique multilocus genotypes of asexual and sexual populations. Genotypes of sexual populations group as distinct genetic clusters in the 3D plot generated by a nonmetric multidimensional scaling (NMDS) analysis (Fig. 2). In the discriminate analysis of principal components (DAPC) analysis, the asexual genotypes as a whole and the four clusters of sexual genotypes are significantly different from each other [Wilks's lambda $=0.098$, approximate $F$ ratio $=80.247$, df $(12,685), P<0.0001]$. Only a few asexual genotypes grouped inside clusters of sexual genotypes, indicating genetic proximity. Greater genetic distances between clones and sexual clusters most likely indicate that the


Fig. 2. Plot of 3D object coordinates resulting from an NMDS analysis derived from individual genetic distances. Colored circles represent genotypes of sexual M. smithii populations (blue, Belém; orange, Parintins; green, Caldeirão; yellow, São Gabriel da Cachoeira) and red triangles represent genotypes of asexual lineages.
clones originated from sexual source populations other than the four that were sampled, or perhaps that they are of older evolutionary origin and thus highly diverged. Limited overlap between sexual clusters further indicates that the genetic variability of sexual populations was not exhaustively sampled for M. smithii as a species.

Phylogenetic Analyses. To test the monophyly of M. smithii and reconstruct whether asexuality evolved once or multiple times from a sexually reproducing ancestor, we conducted a global phylogenetic analysis of the genus Mycocepurus and a local analysis of only $M$. smithii taxa representing a sample from each of the genotyped populations (Table S5).

In the global analyses, the monophyly of the genus Mycocepurus was unequivocally supported [Fig. S1; Bayesian posterior probability $(\mathrm{BPP})=1$; maximum likelihood bootstrap proportion $(M L B P)=100]$, which is consistent with a previous analysis (35). Within the genus Mycocepurus, nine reciprocally monophyletic, highly supported groups were recognized [Fig. S1; BPP $=1$, MLBP $\geq 92$ ], supporting the existence of five new species (Fig. S1). The monophyly of M. smithii was well-supported [Fig. S1; $\mathrm{BPP}=1$, MLBP $=92$ ], suggesting that extant M. smithii populations derive from a single most recent common ancestor (MRCA). An undescribed species from the Colombian Amazon was found to be the sister lineage of M. smithii, but with only weak statistical support (Fig. S1; BPP $=0.72$, MLBP $=56$ ).

For the mitochondrial gene tree of genotyped M. smithii populations, the statistical support for relationships between sampled individuals is generally low, as expected from the relatively weak phylogenetic informativeness of the mtDNA markers (Table S6; parsimony-informative characters $=169 ; 11 \%$ of mtDNA dataset). Despite this general problem, the monophyly of M. smithii as a species was supported by both the mitochondrial and nuclear data, suggesting that a hybrid origin of asexual reproduction is unlikely in M. smithii. The mitochondrial phylogeny further indicates that the sexual populations are separated into at least two distantly related groups (Fig. 3) and that relationships among asexual populations are in some cases correlated with geography. Three sexual populations form a reasonably well supported clade $(\mathrm{BPP}=0.96, \mathrm{MLBP}=59)$ that also includes two clonal pop-
ulations (Fig. 3). The sexual population from Belém forms the sister lineage to a clade consisting of asexual populations from the Amazon and Trinidad. This relationship, however, is only weakly supported $(B P P=0.51)$. Neither the asexual nor the sexual populations are reconstructed as monophyletic under any possible rooting (Fig. 3), consistent with the hypothesis of independent evolutionary origins of asexuality. Based on Bayes factors (BF), the likelihoods of phylogenies resulting from analyses in which the asexual populations are constrained to be monophyletic are significantly worse fitting to the data than those resulting from unconstrained analyses [ML: $2 \ln (\mathrm{BF})=137.82$; Bayesian: $2 \ln$ $(B F)=124.1]$, further indicating multiple independent origins of asexuality.
Divergence-dating analysis. The stem-group age (i.e., earliest possible origin) of the fungus-gardening ants was estimated to be 52 million years (Ma) [confidence interval $(\mathrm{CI})=44,60$ ] and the crown-group age was $50 \mathrm{Ma}(\mathrm{CI}=43,58)$, consistent with estimates in Schultz and Brady (35). The estimated crown-group age of the genus Mycocepurus is $\sim 10 \mathrm{Ma}(\mathrm{CI}=6,14)$, whereas the stem-group age is considerably older with $37 \mathrm{Ma}(\mathrm{CI}=27,46)$, which is also indicated by a long branch leading to the MRCA shared with the sister lineage Myrmicocrypta (Fig. S1). The stemgroup age of Mycocepurus smithii is $\sim 1.65 \mathrm{Ma}(\mathrm{CI}=0.57,2.84)$, whereas the crown-group origin was estimated to be considerably more recent at 0.5 Ma ago $(\mathrm{CI}=0.01,1.19)$. This relatively recent estimate for the evolutionary origin of M. smithii is consistent with the almost complete absence of genetic variability observed in the nuclear DNA sequences.

## Discussion

M. smithii consists of a mosaic of sexual and parthenogenetic populations. Although separated by as much as $2,000 \mathrm{~km}$, the sexual populations are located along the Rio Amazonas and the Rio Negro, suggesting the existence of a central widespread sexual (or facultatively sexual/asexual) population that has repeatedly generated asexual, clonally reproducing lineages. These asexual


Fig. 3. Midpoint-rooted Bayesian phylogram of $M$. smithii individuals representing each of the genotyped populations based on analyses of three mitochondrial gene fragments. Bayesian posterior probabilities ( $\times 100$ ) and ML bootstrap proportions are indicated as BPP/MLBP. Red branches and bold font indicate taxa from sexually reproducing populations. All other taxa represent asexual populations. (Scale bar, number of substitutions per site.)
lineages have rapidly dispersed throughout much of Latin America, leading to the current widespread geographic distribution of the species $(32,33)$. The high clonal diversity in some populations indicates that independently evolved clonal lineages have colonized these habitats separately and repeatedly through time. Once an M. smithii lineage has lost the ability to reproduce sexually, the condition seems irreversible, resulting in our finding of genetically identical individuals in each of the 218 parthenogenetic colonies studied. The mitochondrial phylogeny of M. smithii (Fig. 3) identifies a statistically well-supported group that includes individuals from both asexual and sexual populations, and places the sexual populations in at least two distantly related clades. These patterns, coupled with the results of phylogenetic constraint analyses, are consistent with independent and repeated losses of sexual reproduction. Given the limitations of our sampling, it is nearly certain that additional sexual source populations, from which such closely related groups of asexual clones originated, were not sampled. The divergence-dating analysis provides a recent estimate (crown-group age: $0.5 \mathrm{Ma} ; \mathrm{CI}=0.01,1.19$ ) for the origin of the presumably sexual most recent common ancestor of extant M. smithii populations, indicating that secondary transitions from sexual to asexual reproduction have occurred recently and possibly continue to occur in the present.
The combined phylogenetic and population-genetic evidence is consistent with the hypothesis that sexual reproduction was lost in ancestors of parthenogenetic M. smithii populations. The spontaneous loss of sexual reproduction has been proposed for the little fire ant Wasmannia auropunctata, in which sexual populations in the native range of this invasive species are likely the source of asexual invasive populations (36). The proximate genetic mechanisms causing the loss of sexuality are not well-understood. However, studies of Cape honey bees (37) and of parthenogenetic lineages of Drosophila melanogaster (38) show that a single recessive allele can cause thelytoky. These examples suggest that the high propensity for switching from sexual to asexual reproduction in M. smithii may be controlled by a small number of genes. Breeding experiments could test whether thelytoky is a qualitative or a quantitative trait in M. smithii by introgressing sexual genes into an asexual genetic background and observing the segregation pattern of the offspring.

Cyclical parthenogenesis, the alteration of asexual and sexual life stages ( 39,40 ), is unlikely to occur in M. smithii. In each of the 218 parthenogenetic colonies collected in different seasons over an 8 -y period (2003-2010), nestmates belonged only to one or very few clonal lineages. The nonrandom geographic distribution of sexual and asexual populations likewise suggests that the switch from sexuality to asexuality is unlikely triggered by season.
In arthropods, the evolution of asexuality is often associated with hybridization $(30,41)$, a mechanism so far unknown in social Hymenoptera (36). Given the monophyly of M. smithii and the phylogenetic congruence between nuclear and mitochondrial markers, hybridization is also unlikely to explain the origin of asexuality in M. smithii.

Alternatively, microorganisms such as Wolbachia, Cardinium, and Rickettsia have been shown to induce parthenogenesis in parasitoid wasps (42-44). Even though Wolbachia infections have not been detected in social Hymenoptera (45), including M. smithii (16), other parthenogenesis-inducing symbionts cannot be ruled out in M. smithii.
Although we have so far only examined a scenario in which asexual populations of M. smithii have repeatedly arisen from sexual populations, the nonmonophyly of the sexual and asexual populations in the mitochondrial phylogeny equally supports an alternative hypothesis: that sexual populations have repeatedly evolved from widespread asexual populations. Although evolutionary reversals from less complex to more complex ancestral traits have long been deemed unlikely $(46,47)$, reversals from asexual to sexual reproduction have been suggested for mites and
hawkweed $(48,49)$. The absence of males (17) and the lack of genetic recombination in asexual populations of M. smithii are consistent with the hypothesis that meiosis is dysfunctional in parthenogenetic queens. In species with haplodiploid sex determination, restoring functional meiosis would simultaneously result in recombination and the production of haploid eggs, from which males could develop (41, 50). Therefore, haplodiploid species might theoretically require only a single mutation to reevolve sexuality. However, given $(i)$ that all Mycocepurus species for which we have biological information reproduce sexually, (ii) the high genetic diversity observed in the sexually reproducing M. smithii populations, and (iii) the genetic variability observed between separate clonal lineages, it seems highly unlikely that extant sexual M. smithii individuals descended from asexual ancestors.
Despite the large number of clonal lineages found across the broad geographic distribution of M. smithii, mothers and offspring from field and laboratory colonies were genetically identical across multiple generations and males were completely absent from asexual populations, suggesting apomixis as the cytogenetic mechanism underlying thelytoky. Alternatively, it is possible that M. smithii queens reproduce via meiotic parthenogenesis (automixis) with central fusion, a cytogenetic mechanism characterized by potentially very low recombination rates, depending on the locus's distance to the centromere, as indicated by genotype pairs that differ only at a single locus. Automixis with central fusion has been documented in social Hymenoptera (18, 19, 26, 28, 29, 51, 52 ), and a recent study of $W$. auropunctata reported recombination rates as low as $0-2.8 \%$ (31). Our current data, however, are insufficient to clearly distinguish between automixis with a low recombination rate and apomixis with rare gene conversion.

## Conclusion

M. smithii is a recently evolved, monophyletic species consisting of a mosaic of asexual and sexually reproducing populations. Sex has been lost repeatedly in multiple lineages. Once females have lost the ability to reproduce sexually, the condition seems to be irreversible. The lack of genetic recombination and the complete absence of males in asexual populations and laboratory breeding experiments indicate that meiosis may be dysfunctional in asexual females, and thus that mitotic parthenogenesis (apomixis) is the cytogenetic mechanism underlying parthenogenesis in M. smithii. However, automixis with central fusion and low recombination rates cannot be ruled out as a possible alternative mechanism. Sexually reproducing populations were discovered in the center of M. smithii's geographic distribution along the Rio Amazonas and the Rio Negro. M. smithii has high local population densities and the most extensive geographic distribution of any fungus-growing ant species, indicating its ecological success. The sympatric existence of sexual and asexual populations in the Amazon suggests that sexual populations continue to enjoy high fitness in the center of the species distribution and are not outcompeted by asexual colonies. The fitness advantage of asexual populations seems to be realized outside the range of sexual populations, where parthenogenetic queens apparently colonize vacant niches and disperse rapidly in the absence of males. Given that kin selection theory predicts that conflict over reproduction should be absent in groups of genetically identical individuals, it would be intriguing to investigate the maintenance of cooperative behavior and social conflict in M. smithii. Finally, given the absence of genetic variation within colonies and the presence of phenotypically distinct queen and worker castes, M. smithii appears to be a study organism that is well-suited for investigating the proximate mechanisms of environmentally based caste determination and for exploring the genetic basis of phenotypic plasticity.

## Materials and Methods

Population-Genetic Analyses. As test statistics for asexuality, we used the existence of repeated multilocus genotypes and maximum deviation from random mating ( $F_{15}$ ) (53-55). The genotype-to-individual ratio (G:N ratio) was applied to identify multilocus genotypes (55) (Table S1). Independently evolved asexual lineages (clones) originating from separate sexual events were distinguished from slightly different multilocus genotypes that diversified through accumulation of mutations or scoring errors by calculating the probability, $p_{\text {sex }}$, following the methodology outlined in ref. 34 and implemented in GENCLONE 2.0 (56). The observed and expected heterozygosity for each clonal lineage (57), the proportion of clonal genotypes in a population, $F$ statistics, and AMOVA were calculated in GENALEX 6 (58) and Genetic Data Analysis (59). To reveal the underlying population-genetic structure of sexual and asexual populations, we used the multivariate statistical methods (60-62) NMDS, principal component analysis, and DAPC, as implemented in PERMAP (63), GENALEX (58), and SYSTAT (Systat Software).

Phylogenetic Analyses. We conducted analyses of two distinct datasets: first, a global dataset that included 84 M . ingroup taxa, 32 of them M . smithii, and 87 outgroup taxa. The recently described social parasite $M$. castrator (64) was not included. The alignment consisted of $2,319 \mathrm{bp}$ of protein-coding (exon) sequences of three single-copy nuclear genes and one mitochondrial gene and was divided into 10 partitions. Second, we conducted a local analysis of 41 M . smithii taxa representing one individual from each of the genotyped populations (Table S5). We obtained $1,515 \mathrm{bp}$ of three mitochondrial genes and divided the alignment into two partitions (Table S6). Constrained topologies were estimated using Bayesian and ML analyses, and differences in the likelihoods of constrained versus unconstrained topologies were evaluated using Bayes factors (65-67). All ingroup sequence data were generated for this study (Table S5). Best-fit models of sequence evolution were selected for each partition under the Akaike information criterion (68) and hierarchical likelihood ratio tests as calculated in MODELTEST v3.7 (69) (Table S6). We conducted partitioned Bayesian analyses using MrBayes v3.1.2 (70). Burn-in and convergence were assessed using Tracer v1.5 (71). Partitioned ML analyses were carried out in GARLI 0.97.r737 (72).

Divergence-Dating Analysis. We used a Bayesian relaxed clock uncorrelated lognormal approach implemented in the program BEAST v1.4.8 with a Yule process as the tree prior (73-75). The root node was given a normal age prior distribution (mean $=73.5, \mathrm{SD}=4.5$ ), following methodology described in ref. 76. Based on fossil data, lognormal age prior distributions were assigned to three internal nodes, as outlined in ref. 35. For more details on analyses and results, see SI Materials and Methods and Tables S1-S8.

ACKNOWLEDGMENTS. We thank the following scientists for generously contributing specimens and institutions for providing permission and access to study sites: G. Alpert, C. Brandão, S. Cappellari, J. Carpenter, S. Cover, R. Feitosa, F. Fernández, J. Fontenla, A. Harada, A. Henriques, A. Himler, J. Lattke, J. Longino, W. Mackay, J. Maes, J. Martins, B. Merz, N. Pitman, R. Poggi, V. Raineri, C. Samper, S. Sánchez-Peña, J. Santisteban, R. Silva, the late R. Snelling, J. Sosa-Calvo, H. Vasconcelos, P. Ward, and E. Wilson; the Autoridad Nacional del Ambiente and Smithsonian Tropical Research Institute, Panama; Conselho Nacional de Desenvolvimento Científico e Tecnológico and the Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis; the Forestry Division and Wildlife Section of Trinidad; the Minesterio del Ambiente y Energia, Costa Rica; and the Office of the President of Guyana. P. Armstrong and E. Okonski kindly provided assistance in the laboratory. L. Hayek and S. Arnaud-Haond provided valuable advice on statistical analyses. D. Bolnik, S. Brady, D. Gotzek, D. Hillis, M. Singer, P. Ward, and two anonymous reviewers improved the manuscript with helpful comments. C.R. gratefully acknowledges financial support from Ernst Mayr grants (Museum of Comparative Zoology) and the Green Fund (Harvard University), a National Science Foundation (NSF) Doctoral Dissertation Improvement Grant (DEB-0808164), the Explorer's Club Exploration Fund, a Lewis and Clark Field Scholarship, and research grants from the Section of Integrative Biology and a Miller Endowed University Continuing Fellowship from the University of Texas at Austin; T.R.S. was supported by the NSF (DEB-0949689 and DEB-0431330), the Smithsonian Scholarly Studies Program, and the Smithsonian Restricted Endowments Fund; M.B. received support from the Fundação de Apoio à Pesquisa do Estado de São Paulo (2008/54386-9) and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (476250/2008-0 and 304661/ 2009-0); M.V.B.G. and M.V. acknowledge the Bundesministerium für Bildung und Forschung (BMBF) and the Conselho National de Pesquisa e Tecnologia (BMBF01LT0014/CNPq 690018/00-2) for kindly providing funding for SHIFT Project ENV52-2; U.G.M. was funded by grants from the NSF (DEB-0639879, DEB-0110073, and DEB-998379) and the Wheeler Lost Pines Endowment. This study is a chapter of C.R.'s doctoral dissertation.

1. Barton N (1998) Evolutionary biology. The geometry of adaptation. Nature 395: 751-752.
2. Otto SP, Lenormand T (2002) Resolving the paradox of sex and recombination. Nat Rev Genet 3:252-261.
3. Avise JC (2008) Clonality: The Genetics, Ecology, and Evolution of Sexual Abstinence in Vertebrate Animals (Oxford Univ Press, New York).
4. Hamilton WD (1980) Sex versus non-sex versus parasite. Oikos 35:282-290.
5. Lively CM (2010) A review of Red Queen models for the persistence of obligate sexual reproduction. J Hered 101(Suppl 1):S13-S20.
6. Kondrashov AS (1982) Selection against harmful mutations in large sexual and asexual populations. Genet Res 40:325-332.
7. Muller H (1964) The relation of recombination to mutational advance. Mutat Res 1: 2-9.
8. Smith JM (1971) What use is sex? J Theor Biol 30:319-335.
9. Bell G (1982) The Masterpiece of Nature: The Evolution and Genetics of Sexuality (Croom Helm, London).
10. Maynard Smith J (1978) The Evolution of Sex (Cambridge Univ Press, Cambridge, UK).
11. Williams GC (1975) Sex and Evolution (Princeton Univ Press, Princeton, NJ).
12. Barton NH, Charlesworth B (1998) Why sex and recombination? Science 281: 1986-1990.
13. Burt A (2000) Perspective: Sex, recombination, and the efficacy of selection-Was Weismann right? Evolution 54:337-351.
14. Becks L, Agrawal AF (2010) Higher rates of sex evolve in spatially heterogeneous environments. Nature 468:89-92.
15. Fernández-Marín H, Zimmerman J, Wcislo W, Rehner S (2005) Colony foundation, nest architecture and demography of a basal fungus-growing ant, Mycocepurus smithii (Hymenoptera, Formicidae). J Nat Hist 39:1735-1743.
16. Himler AG, Caldera EJ, Baer BC, Fernández-Marín H, Mueller UG (2009) No sex in fungus-farming ants or their crops. Proc Biol Sci 276:2611-2616
17. Rabeling $C$, et al. (2009) Thelytokous parthenogenesis in the fungus-gardening ant Mycocepurus smithii (Hymenoptera: Formicidae). PLoS One 4:e6781.
18. Verma S, Ruttner F (1983) Cytological analysis of the thelytokous parthenogenesis in the Cape honeybee (Apis mellifera capensis Escholtz). Apidologie (Celle) 14:41-57.
19. Baudry E, et al. (2004) Whole-genome scan in thelytokous-laying workers of the Cape honeybee (Apis mellifera capensis): Central fusion, reduced recombination rates and centromere mapping using half-tetrad analysis. Genetics 167:243-252.
20. Ito F, Touyama Y, Gotoh A, Kitahiro S, Billen J (2010) Thelytokous parthenogenesis by queens in the dacetine ant Pyramica membranifera (Hymenoptera: Formicidae). Na turwissenschaften 97:725-728.
21. Gotoh A, Billen J, Tsuji K, Sasaki T, Ito F (February 18, 2011) Histological study of the spermatheca in three thelytokous parthenogenetic ant species, Pristomyrmex punctatus, Pyramica membranifera and Monomorium triviale (Hymenoptera: Formicidae). Acta Zool, 10.1111/j.1463-6395.2010.00498.x.
22. Timmermans I, Hefetz A, Fournier D, Aron S (2008) Population genetic structure, worker reproduction and thelytokous parthenogenesis in the desert ant Cataglyphis sabulosa. Heredity 101:490-498
23. Pearcy M, Goodisman MAD, Keller L (February 2, 2011) Sib mating without inbreeding in the longhorn crazy ant. Proc Biol Sci, 10.1098/rspb.2010.2562.
24. Keller $L$ (2007) Uncovering the biodiversity of genetic and reproductive systems: Time for a more open approach. American Society of Naturalists E. O. Wilson Award winner address. Am Nat 169:1-8.
25. Heinze J (2008) The demise of the standard ant (Hymenoptera: Formicidae). Myrmecol News 11:9-20.
26. Fournier D, et al. (2005) Clonal reproduction by males and females in the little fire ant. Nature 435:1230-1234.
27. Pearcy M, Aron S, Doums C, Keller L (2004) Conditional use of sex and parthenogenesis for worker and queen production in ants. Science 306:1780-1783.
28. Pearcy M, Hardy O, Aron S (2006) Thelytokous parthenogenesis and its consequences on inbreeding in an ant. Heredity 96:377-382.
29. Kellner K, Heinze J (2011) Mechanism of facultative parthenogenesis in the ant Platythyrea punctata. Evol Ecol 25:77-89.
30. Leach IM, et al. (2009) Thelytoky in Hymenoptera with Venturia canescens and Leptopilina clavipes as case studies. Lost Sex: The Evolutionary Biology of Parthenogenesis, eds Schön I, Martens K, van Dijk P (Springer, Dordrecht, The Netherlands), pp 347-375.
31. Rey O, et al. (March 31, 2011) Meiotic recombination dramatically decreased in thelytokous queens of the little fire ant and their sexually produced workers. Mol Biol Evol, 10.1093/molbev/msr082.
32. Mackay WP, Maes JM, Rojas Fernández P, Luna G (2004) The ants of North and Central America: The genus Mycocepurus (Hymenoptera: Formicidae). J Insect Sci 4:27.
33. Kempf W (1963) A review of the ant genus Mycocepurus Forel, 1893 (Hymenoptera: Formicidae). Stud Entomol 6:417-432.
34. Arnaud-Haond S, Duarte CM, Alberto F, Serrão EA (2007) Standardizing methods to address clonality in population studies. Mol Ecol 16:5115-5139.
35. Schultz TR, Brady SG (2008) Major evolutionary transitions in ant agriculture. Proc Natl Acad Sci USA 105:5435-5440.
36. Foucaud J, et al. (2007) Sex and clonality in the little fire ant. Mol Biol Evol 24: 2465-2473.
37. Lattorff HMG, Moritz RFA, Fuchs S (2005) A single locus determines thelytokous parthenogenesis of laying honeybee workers (Apis mellifera capensis). Heredity 94: 533-537.
38. Fuyama Y (1986) Genetics of parthenogenesis in Drosophila melanogaster. II. Characterization of a gynogenetically reproducing strain. Genetics 114:495-509.
39. Normark BB (2003) The evolution of alternative genetic systems in insects. Annu Rev Entomol 48:397-423.
40. Decaestecker E, De Meester L, Mergeay J (2009) Cyclical parthenogenesis in Daphnia: Sexual versus asexual reproduction. Lost Sex: The Evolutionary Biology of Parthenogenesis, eds Schön I, Martens K, van Dijk P (Springer, Dordrecht, The Netherlands).
41. Suomalainen E, Saura A, Lokki J (1987) Cytology and Evolution in Parthenogenesis (CRC, Boca Raton, FL).
42. Zchori-Fein E, et al. (2001) A newly discovered bacterium associated with parthenogenesis and a change in host selection behavior in parasitoid wasps. Proc Natl Acad Sci USA 98:12555-12560.
43. Perlman SJ, Hunter MS, Zchori-Fein E (2006) The emerging diversity of Rickettsia. Proc Biol Sci 273:2097-2106.
44. Werren JH (1997) Biology of Wolbachia. Annu Rev Entomol 42:587-609.
45. Wenseleers T, Billen J (2000) No evidence for Wolbachia-induced parthenogenesis in the social Hymenoptera. J Evol Biol 13:277-280.
46. Dollo L (1893) Les lois de l'évolution. Bulletin de la Société Belge de Géologie de Paléontologie et d'Hydrologie 7:164-166
47. Bull J, Charnov E (1985) On irreversible evolution. Evolution 39:1149-1155.
48. Chapman H, Houliston GJ, Robson B, Iline I (2003) A case of reversal: The evolution and maintenance of sexuals from parthenogenetic clones in Hieracium pilosella. Int J Plant Sci 164:719-728.
49. Domes K, Norton RA, Maraun M, Scheu S (2007) Reevolution of sexuality breaks Dollo's law. Proc Natl Acad Sci USA 104:7139-7144.
50. Cook JM (1993) Sex determination in the Hymenoptera: A review of models and evidence. Heredity 71:421-435.
51. Foucaud J, et al. (2006) Rare sexual reproduction events in the clonal reproduction system of introduced populations of the little fire ant. Evolution 60:1646-1657.
52. Foucaud J, Estoup A, Loiseau A, Rey O, Orivel J (2010) Thelytokous parthenogenesis, male clonality and genetic caste determination in the little fire ant: New evidence and insights from the lab. Heredity 105:205-212.
53. Balloux F, Lehmann L, de Meeûs T (2003) The population genetics of clonal and partially clonal diploids. Genetics 164:1635-1644.
54. De Meeûs T, Balloux F (2005) F-statistics of clonal diploids structured in numerous demes. Mol Ecol 14:2695-2702.
55. Halkett F, Simon JC, Balloux F (2005) Tackling the population genetics of clonal and partially clonal organisms. Trends Ecol Evol 20:194-201.
56. Arnaud-Haond S, Belkhir K (2007) GENCLONE: A computer program to analyse genotypic data, test for clonality and describe spatial clonal organization. Mol Ecol Notes 7:15-17.
57. Conner JK, Hartl DL (2004) A Primer of Ecological Genetics (Sinauer, Sunderland, MA).
58. Peakall R, Smouse PE (2006) GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288-295.
59. Lewis P, Zaykin D (2002) GDA (Genetic Data Analysis). http://hydrodictyon.eeb.uconn. edu/people/plewis/software.php.
60. Jombart T, Pontier D, Dufour AB (2009) Genetic markers in the playground of multivariate analysis. Heredity 102:330-341.
61. Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genet 11:94.
62. Lessa EP (1990) Multidimensional analysis of geographic genetic structure. Syst Biol 39:242-252.
63. Heady R, Lucas J (2007) PERMAP: Perceptual MAPping Software (Univ of Louisiana at Lafayette). http://www.ucs.louisiana.edu/~rbh8900.
64. Rabeling C, Bacci M (2010) A new workerless inquiline in the Lower Attini (Hymenoptera: Formicidae), with a discussion of social parasitism in fungus-growing ants. Syst Entomol 35:379-392.
65. Kass RE, Raftery AE (1995) Bayes factors. J Am Stat Assoc 90:773-795.
66. Nylander JAA, Ronquist F, Huelsenbeck JP, Nieves-Aldrey JL (2004) Bayesian phylogenetic analysis of combined data. Syst Biol 53:47-67.
67. Brown JM, Lemmon AR (2007) The importance of data partitioning and the utility of Bayes factors in Bayesian phylogenetics. Syst Biol 56:643-655.
68. Posada D, Crandall KA (2001) Selecting the best-fit model of nucleotide substitution. Syst Biol 50:580-601.
69. Posada D, Crandall KA (1998) MODELTEST: Testing the model of DNA substitution Bioinformatics 14:817-818.
70. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572-1574.
71. Rambaut A, Drummond A (2007) Tracer v1.5. http://tree.bio.ed.ac.uk/software/tracer
72. ZwickI D (2006) Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. PhD dissertation (Univ of Texas at Austin). http://garli.googlecode.com.
73. Drummond AJ, Nicholls GK, Rodrigo AG, Solomon W (2002) Estimating mutation parameters, population history and genealogy simultaneously from temporally spaced sequence data. Genetics 161:1307-1320.
74. Drummond AJ, Ho SYW, Phillips MJ, Rambaut A (2006) Relaxed phylogenetics and dating with confidence. PLoS Biol 4:e88.
75. Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214
76. Brady SG, Schultz TR, Fisher BL, Ward PS (2006) Evaluating alternative hypotheses for the early evolution and diversification of ants. Proc Natl Acad Sci USA 103:18172-18177.

# Supporting Information 

Rabeling et al. 10.1073/pnas. 1105467108

## SI Materials and Methods

Population-Genetic Analyses. Population sampling. The known distribution range of Mycocepurus smithii includes Latin America from northern Mexico to northern Argentina and many Caribbean islands (1-6). To test for asexuality in M. smithii, we sampled populations throughout the geographic range between 2003 and 2010 (Table S1). Previous studies demonstrated that M. smithii colonies could be either mono- or polygynous, meaning that a single colony could include either a single or multiple reproductively active queens (7-9). Preliminary genotyping of sampled individuals revealed that in some populations more than a single multilocus genotype was present; however, queen and offspring genotypes were genetically identical. Hence, our working hypothesis was that $M$. smithii queens produce workers and queens clonally, either via apomixis or automixis. We attempted to sample entire colonies of M. smithii through careful nest excavations, including whenever possible workers, brood, and a reproductively active queen(s). In addition to nest excavations, workers were collected from nest entrances. Scooping up nest entrances with a knife proved to be an efficient way to collect workers because foragers accumulate in a tiny circular chamber below the entrance $(7,10)$.
Microsatellite development. To characterize M. smithii colonies and populations genetically, we developed 12 highly variable short tandem repeat markers (microsatellites). For microsatellite development, genomic DNA was extracted from $\sim 100$ M. smithii workers collected from a single population in Rio Claro, Brazil, with a QIAamp DNA Micro Kit (QIAGEN) to obtain $\sim 100 \mu \mathrm{~g}$ DNA. Genetic Identification Services enriched microsatellite libraries for four different motifs in parallel: CA, GA, AAC, and ATG. Pooled genomic DNA was partially restricted with the enzymes RsaI, HaeIII, BsrB1, PvuII, StuI, ScaI, and EcoRV. Size-selected fragments ( $300-750 \mathrm{bp}$ ) were linked to adapters containing a HindIII restriction site and then captured with magnetic beads. Fragments were ligated into the HindIII site of the plasmid pUC19. Plasmids were propagated in Escherichia coli DH5 $\alpha$ and stored in $20 \%$ glycerol at $-80^{\circ} \mathrm{C}$. Cells from the glycerol stock were spread on X-gal/isopropyl- $\beta$-d-thiogalactoside/ ampicillin plates, picked after incubation, and heated to $100{ }^{\circ} \mathrm{C}$ for 10 min in $10 \mu \mathrm{~L}$ PCR Master Mix ( $1 \times$ PCR buffer, 30 nmol $\mathrm{MgCl}_{2}, 3 \mathrm{nmol}$ each dNTP, 15 pmol M-13 cloning-site primers). Five microliters of polymerase solution ( $0.075 \mu \mathrm{~L}, 5 \mathrm{U}$ Taq DNA polymerase, $0.5 \mu \mathrm{~L} 10 \times$ PCR buffer, $4.425 \mu \mathrm{~L} \mathrm{ddsH} \mathrm{H}_{2} \mathrm{O}$ ) were added to amplify the insert using a PTC-200 Cycler (MJ Research) ( $94{ }^{\circ} \mathrm{C}$ for 3 min ; 35 cycles of $94^{\circ} \mathrm{C}$ for $40 \mathrm{~s}, 55^{\circ} \mathrm{C}$ for $40 \mathrm{~s}, 72^{\circ} \mathrm{C}$ for $30 \mathrm{~s} ; 72^{\circ} \mathrm{C}$ for 4 min ). Overall, 100 PCR products ( 25 for each of the CA, GA, AAC, and ATG libraries) were sequenced on an Applied Biosystems 3100 Genetic Analyzer using BigDye Terminator chemistry.

Twelve loci were chosen to represent a variety of variable repeat motifs, variable product sizes, and similar annealing temperatures, and were combined in four multiplex polymerase chain reactions (Table S7). Specific primers were designed with an optimal annealing temperature ( $\mathrm{T}_{\mathrm{m}}$ ) of $56-58{ }^{\circ} \mathrm{C}$, a GC content of $\sim 50 \%$, and at least one GC clamp using the Primer3 web site (11).
Genotyping. DNA of single workers, queens, and spermatheca contents was extracted using a $10 \%$ Chelex solution (SigmaAldrich). Spermatheca contents were extracted following the methodology outlined in Rabeling et al. (8). One microliter of DNA extract was used per $10 \mu \mathrm{~L}$ PCR and amplified using the following conditions: $95^{\circ} \mathrm{C}$ for 5 min ; 35 cycles of $94^{\circ} \mathrm{C}$ for 30 s , $55^{\circ} \mathrm{C}$ for $90 \mathrm{~s}, 72^{\circ} \mathrm{C}$ for $60 \mathrm{~s} ; 72^{\circ} \mathrm{C}$ for 10 min . Using the multiplex

PCR, we examined allelic variation within each locus by genotyping $1,930 \mathrm{M}$. smithii samples, yielding a total of 106 alleles across the 12 loci (range $=2-15$ alleles per locus; Table S7). The number of alleles per locus per individual never exceeded two, indicating that $M$. smithii females are diploid. Representatives of each multilocus genotype were genotyped twice, using the same DNA extract, and scored blindly to minimize the possibility of erroneously assigning incorrect genotypes to the individuals.

For fragment analysis, $1 \mu \mathrm{~L}$ of PCR product was mixed with 8 $\mu \mathrm{L}$ of HiDi (Applied Biosystems) and $1.5 \mu \mathrm{~L}$ of cheaply amplified size standards using the following primer/ladder sizes: ROX F1, ROX 104, ROX 150, ROX 200, ROX 253, ROX 305, and ROX 424 (12). PCR products were analyzed on an Applied Biosystems 3100 Genetic Analyzer and alleles were scored using GeneScan v3.5 (Applied Biosystems) and GeneMarker v1.5 (SoftGenetics).
Statistical analyses. The goals of the population-genetic analyses were to determine (i) whether M. smithii is obligately or facultatively asexual, (ii) the cytogenetic mechanism underlying parthenogenesis in reproductive females, and (iii) the genetic structure and diversity within and among asexual and sexual colonies and populations. According to preliminary analyses performed on laboratory and field colonies, our hypothesis was that workers and queens of a single colony exhibited repeated multilocus genotypes (MLGs). The genotype-to-individual ratio (G:N ratio) is a simple measure for identifying clonality, with ratios ranging from 0 to 1 (13). A value close to 0 is characteristic of a strictly clonal colony/ population in which all individuals share the same genotype, whereas a value of 1 is characteristic of a population in which all individuals have distinct genotypes, as expected under sexual reproduction and genetic recombination (Table S1). Because ants are social insects and live in colonies, we devised a second, colonylevel measure of asexuality: the genotype-to-colony (G:C) ratio (the number of genotypes observed divided by the number of colonies screened). A value of 1 indicates that a single multilocus genotype was identified in each colony and all colonies were different from each other, as expected under clonal reproduction by a single queen; values between 0 and 1 indicate some sharing of genotypes between different colonies; and values greater than 1 indicate increased genetic diversity within colonies, suggesting either the presence of multiple genetically distinct reproductives in a colony or genetic recombination (Table S1).

Scoring repeated multilocus genotypes of multiple colonies per population revealed that MLGs could differ by only a single allele. These minor differences could either be due to "somatic" mutations or to scoring errors or, alternatively, slightly different MLGs could represent independent asexual lineages that originated separately from a sexually reproducing ancestral population (14) (Table S3). We therefore distinguished between slightly different MLGs belonging to the same asexual lineage, or clone, and slightly different MLGs that belong to the same clone and arose via mutations or scoring errors $(13,14)$. First, as recommended in Arnaud-Haond et al. (14), we identified MLG pairs in asexual populations with very low genetic distances, as indicated by a small peak in the frequency distribution of genetic distances. Then we calculated $p_{\text {sex }}$ (equation 3 in ref. 14) using the software GENCLONE 2.0 (15) to estimate the probability that identical multilocus genotypes arose from independent sexual events or that they belonged to the same clone. If the probability was lower than the implemented threshold value $(\alpha=0.01)$, then identical MLGs were regarded as belonging to the same asexual lineage or clone. In our analysis, we first excluded all identical MLGs, re-
sulting in a total of 57 unique MLGs. Of those 57 MLGs, 11 MLG pairs differed by only a single allele, reducing the number of independently derived asexual lineages to 46 . Increasing the allele difference between MLG pairs to $2,3,4,5$, and 6 alleles further reduced the number of independently originated clones to 43,41 , 40,39 , and 38 clones, respectively.
Interestingly, seven MLG pairs, all of which came from colonies collected in the same population, differed only at a single locus in which one lineage was homozygous for a given locus and the other lineage was heterozygous (Table S3; Panchan B and C, Copan A and B, Remate A and B and Tikal A, Ocumare B and D, Ocumare B and C, Amigos A and C, Cuevas C and Simla B and C). Currently, we cannot distinguish whether this difference represents a transition from heterozygosity to homozygosity, which would be expected under automixis with central fusion and low recombination rates $(16,17)$, or whether it represents a case of gene conversion in an apomictic lineage.
We also measured the inbreeding coefficient of M. smithii colonies/populations, describing the maximum deviation from random mating and calculated as $F_{\text {IS }}=\mathrm{H}[\mathrm{bar}]_{\mathrm{e}}-\mathrm{H}[\mathrm{bar}]_{\mathrm{o}} / \mathrm{H}$ $[\mathrm{bar}]_{\mathrm{e}}(13,14,18,19)$, using the software package Genetic Data Analysis (GDA) (20). Observed heterozygosity $\left(\mathrm{H}_{\mathrm{o}}=\right.$ number of heterozygosities $/ N$ ) and expected heterozygosity $\left[\mathrm{H}_{\mathrm{e}}=1-\Sigma \mathrm{p}_{\mathrm{i}}{ }^{2}\right]$ were calculated using the software GENALEX 6 (21). $F$ statistics and heterozygosities were calculated for each MLG and for each recombinant population separately. To avoid resampling of identical MLGs in recombinant populations, we included only a single representative of each genotype. The analysis of molecular variance was calculated with GENALEX 6 (21). Clonal diversity was calculated as $R=(\mathrm{G}-1) /(N-1)$, with G representing the number of asexual lineages, or clones, and $N$ representing the number of sampled multilocus genotypes (14).

To reveal the underlying population-genetic structure of sexual and asexual populations, we used a number of multivariate statistical methods (22, 23). Nonmetric multidimensional scaling (NMDS) analyses were used to identify the presence of genetic clusters. In GDA (20), we transformed the genetic variability described by the microsatellite data into a matrix of pairwise Nei's 1972 standard genetic distances $(20,24)$. The distance matrix was then used to identify clusters that best describe the observed genetic variability in a few dimensions (22,25-27) using the software PERMAP 11.6 (28). To find a global minimum mapping solution, we used nonmetric ratio and error bounds with a $5 \%$ error bound, set the convergence rate control to small step size, and set the convergence limit control to high precision. The analysis was carried out for three dimensions. The 3D distribution of object coordinates was visualized with the software SYSTAT (Systat Software). To determine whether visually identified genetic clusters were significantly different from one another, we used a discriminate analysis of principal components (DAPC) (23) using SYSTAT. In addition, a principal component analysis (PCA) was used to cluster genotypes by genetic similarity, which was $77.55 \%$ for the first three principal components (first PC: $45.57 \%$; second PC: 19.48\%; third PC: $12.5 \%$ ).
Breeding experiment. To provide experimental evidence for the cytogenetic mechanism underlying parthenogenetic reproduction, we conducted a laboratory breeding experiment. Six generations of reproductively active queens $(n=93)$ collected in 2001 in Gamboa, Panama, were raised in laboratory nests over a period of $\sim 1$ y (see ref. 29 for a description of the nest setup). Initially, we selected 30 alate virgin queens (five individuals from six colonies) for the breeding experiment. The queens' wings were removed, a procedure known to stimulate reproductive behavior. Each queen was provided with a piece of fungus garden, which was carefully screened to exclude existing eggs and larvae, and 10 sterile workers were added to each colony. As soon as the experimental colonies started producing sexual offspring (i.e., the next generation of virgin queens), those new gynes were separated
to initiate the next generation of experimental colonies. After raising six generations of reproductive females from multiple maternal lineages, we genotyped all reproductive and alate queens using the microsatellites described above. All 93 individuals were genetically identical, representing the multilocus genotype Gamboa A (Tables S1, S2, and S3). Transitions from hetero- to homozygosity were not identified at any locus. Even though workers in laboratory and field colonies were never found to have functional ovaries (8), we dissected a subset of workers from the experimental colonies to determine whether workers contribute to colony reproduction. No worker reproduction was detected.

Phylogenetic Analyses. Taxon sampling. To test the monophyly of M. smithii and to infer intraspecific relationships between asexual and sexual populations, we conducted phylogenetic analyses of two distinct datasets. First, we analyzed a global dataset that included 84 Mycocepurus ingroup taxa, 32 of them M. smithii (Table S5), and 61 non-Mycocepurus attines, plus 26 nonattine myrmicine outgroups. The recently described social parasite M. castrator (30) was not included in this analysis. Second, we conducted a local ingroup-only analysis including 41 M . smithii taxa representing one individual from each of the genotyped populations (Table S5).
DNA sequencing. Given the small size of Mycocepurus workers, DNA was extracted from entire single specimens. For queens, only the mesosomas were extracted, using a QIAamp DNA Micro Kit (QIAGEN), diluting the extracted DNA in $40 \mu \mathrm{LddH} 2 \mathrm{O}$. For the global dataset, we analyzed an alignment including a total of $2,319 \mathrm{bp}$, consisting of fragments from three single-copy nuclear genes-Elongation Factor 1- $\alpha$ F1 copy (EF1- $\alpha$; 1,071 bp), Wingless (Wg; 405 bp ), and Long Wavelength Rhodopsin (LW $\mathrm{Rh} ; 456 \mathrm{bp}$ )-and one mitochondrial gene-Cytochrome Oxidase I (COI; 387 bp ). All data represent protein-coding (exon) sequences; introns of EF1- $\alpha, \mathrm{Wg}$, and LW Rh were excluded from the phylogenetic analysis because they could not be aligned confidently across ingroup and outgroup taxa. All ingroup sequence data were generated for this study; they do not contain missing fragments, except for the LW Rh sequence of M. goeldii 278, and were deposited in GenBank (Table S5). The outgroup sequences were acquired from published information (31) and lacked DNA sequence information for COI. The global alignment (including all in- and outgroup taxa) included 909 variable nucleotide positions of which 860 were parsimony-informative (Table S6).

For the local, M. smithii-only alignment, we obtained $1,515 \mathrm{bp}$ of the $3^{\prime}$ section of the mitochondrial COI gene ( $1,173 \mathrm{bp}$ ), the t-RNA leucine region (t-RNA Leu; 72 bp ), and the $5^{\prime}$ section of the Cytochrome Oxidase II gene (COII; 270 bp ). The nontranscribed intergenic spacer, present in some other Attini (32), consists of the triplet TTA in M. smithii. All sequence data were translated into amino acid sequences to test for the presence of mitochondrial pseudogenes ("numts"), which have been reported in some Attini (33). The alignment contained 248 informative sites of which 169 were parsimony-informative (Table S6). Primers were modified from several sources and specifically designed for this study (Table S8). DNA sequences were aligned manually in MacClade v4.08 (34). The mitochondrial phylogram was studied both as an unrooted network and as a midpointrooted tree because a long branch separates the ingroup from the sister species of M. smithii, rendering the correct rooting of the M. smithii mitochondrial tree a difficult problem.

Data partitioning. Based on genes and on the variability of codonposition sites within each gene, following the recommended methodology outlined in Ward et al. (35), we partitioned the global dataset into 10 partitions: (i) first and second codon position of EF1- $\alpha$, (ii) third position of EF1- $\alpha$; (iii-v) first, second, and third positions of Wg ; (vi-viii) first, second, and third positions of LW Rh; (ix) first and second position of COI, and (x) third
position of COI (Table S6). Best-fit models of sequence evolution were selected for each partition under the Akaike information criterion (AIC) (36) and hierarchical likelihood ratio tests (hLRTs) as calculated in MODELTEST v3.7 (37) (Table S6). When different models of sequence evolution were chosen by AIC and hLRT, the more complex model was implemented.

The local, M. smithii-only alignment was divided into two partitions. The first partition included the first and second positions of COI and COII and the tRNA leucine region; the second partition included the third positions of COI and COII (Table S6).
Bayesian phylogenetic inference. We conducted partitioned Bayesian analyses using MrBayes v3.1.2 (38) with nucmodel $=4 b y 4$ and samplefreq $=500$. All parameters, including branch-length rate multipliers, were unlinked across partitions except branch lengths and topology. All analyses were carried out using parallel processing (one chain per central processing unit) with eight chains per run and two runs per analysis (nruns $=2$ ).
To address known problems with branch-length estimation in MrBayes (for example, 35, 39-42), we reduced the branch-length priors. In the global analyses, we used brlenspr $=$ unconstrained: $\operatorname{Exp}(133.6081222)$ based on the procedure suggested in Brown et al. (39); in the local analyses, we set brlenspr = unconstrained:Exp (100). For the global analyses, moderately informative Dirichlet priors were specified for branch-length rate multipliers to reflect differences in evolutionary rates between first and second codon positions versus third codon position and between nuclear and mitochondrial genes. In local analyses, which used only two partitions, we set prset ratepr $=$ variable. In both sets of analyses, we used the props command to increase the proposal rate from 1,000 to 10,000 and to decrease the Dirichlet alpha parameter from 500 to 250 for the rate multipliers (proposal mechanism 26 in MrBayes).

Burn-in and convergence were assessed using Tracer v1.5 (43) by examining potential scale reduction factor values in the MrBayes.stat output files, and by using Bayes factor comparisons of marginal likelihoods of pairs of runs in Tracer, which employs the weighted likelihood bootstrap estimator of Newton and Raftery (44) as modified by Suchard et al. (45), with SE estimated using 1,000 bootstrap pseudoreplicates.
Maximum likelihood analyses. Partitioned maximum likelihood (ML) analyses were carried out in GARLI 0.97.r737 (46) using parallel processing.

ML bootstrap analyses: For the global dataset, ML bootstrap analyses consisted of 1,000 pseudoreplicates; for the local dataset 1,500 pseudoreplicates, both deviating from default settings as follows: genthreshfortopoterm $=5000$; scorethreshforterm $=0.10$; startoptprec $=0.5 ;$ minoptprec $=0.01 ;$ numberofprecreductions $=$ 1 ; treerejectionthreshold $=20.0$; topoweight $=0.01$; brlenweight $=$ 0.002 .

ML "best-tree" analyses: For both the global and local datasets, ML best-tree analyses consisted of 100 searches, deviating from the default settings as follows: topoweight $=0.01$; brlenweight $=0.002$. The best tree for the global analysis had a score of $\operatorname{lnL}=-22,005.643$; for the local analysis, $\operatorname{lnL}=-5,141.168$.

In all analyses, the value for modweight was calculated as $0.0005 \times$ (number of subsets +1 ) (46).
Constraint analyses. To test for single versus multiple independent origins of asexuality, sexual and asexual populations were topologically constrained to occupy the opposite sides of a single branch in constrained ML and Bayesian analyses of the ingrouponly mitochondrial data. The marginal likelihoods of the resulting phylogenies were compared with those obtained in unconstrained analyses using Bayes factors (47-50). Bayes factors (BF) were calculated as the ratio of marginal likelihoods from constrained versus unconstrained analyses (i.e., the differences in $-\ln \mathrm{L}$ ) to
produce the test statistic $2 \ln (\mathrm{BF})$. In the case of the ML analysis comparison, the marginal likelihoods used were point estimates from best-tree analyses as described above; for Bayesian analyses, they were post-burn-in harmonic means of the sampled likelihoods (48, 49, 51) estimated in Tracer v1.5 (43), which employs the weighted likelihood bootstrap estimator of Newton and Raftery (44) as modified by Suchard et al. (45), with SE estimated using 1,000 bootstrap pseudoreplicates. Within the Bayesian statistical framework (47), the resulting test statistics, 137.82 (ML) and 124.1 (Bayesian), indicate that the constrained topologies are significantly worse fitting to the data than the unconstrained topologies, thus providing additional support to a hypothesis of multiple origins of asexuality in M. smithii.
Divergence-dating analysis. We used a Bayesian relaxed clock uncorrelated lognormal approach implemented in the program BEAST v1.4.8 with a Yule process as the tree prior (52-54). As the model of sequence evolution, we used GTR $+\mathrm{I}+\Gamma$ with three partitions (codons 1, 2, and 3). To provide identical gene sampling for in- and outgroup taxa, the mitochondrial DNA sequence data were excluded from the divergence-dating analysis and only the nuclear DNA data were retained. Substitution model, rate heterogeneity, and base frequencies were unlinked across codon positions. The root node was assigned to the so-called core myrmicines, a well-supported clade identified in Brady et al. (55), and three taxa, one Hylomyrma (note: Hylomyrma was erroneously named Pogonomymex in ref. 31) and two Myrmica species, were used to root the tree. According to the estimates obtained by Brady et al. (55), the root node was given a normal age prior distribution (mean $=73.5, \mathrm{SD}=4.5$ ). Lognormal age prior distributions were assigned to three internal nodes, the Apterostigma pilosum-complex stem group ( mean $=2.7, \mathrm{SD}=0.3$, zero offset 15.0), the Cyphomyrmex rimosus stem group (mean $=2.2, \mathrm{SD}=$ 0.5 , zero offset 15.0), and the Trachymyrmex stem group (mean $=$ $1.5, \mathrm{SD}=0.5$, zero offset 15.0), taking into account fungusgrowing ant fossils and following the methodology outlined in Schultz and Brady (31). Two fossils, Trachymyrmex primaevus and a putative leafcutter ant fossil depicted in Grimaldi and Engel (56), were not included in our analysis because the placement of these fossils within the tribe Attini is uncertain (31). Markov chain Monte Carlo runs were run for 10 million generations, and the first 1 million generations were discarded as burn-in. Searches achieved sufficient mixing, as indicated by high effective sample size values for all parameters, by plateaus in divergence time estimates over generations after burn-in, and by repeatability of results over 10 independent runs. The results from all independent runs were combined in Tracer v1.5 and reported as mean values $\pm 95 \%$ upper and lower boundaries (43).
To use consistent in- and outgroup taxon sampling and to prevent estimating disproportionally old root nodes for the ingroup clades, only a single representative of each Myсосеригиs species was used during the divergence-dating analysis, except for M. smithii, for which two genetically divergent individuals were included to estimate the crown-group age (i.e., most recent possible origin) for the species. In addition, to test whether the mitochondrial sequence data (present for the Mycocepurus ingroup but not for the outgroup taxa) had an effect on the outcome of the divergence-dating analyses, 10 parallel runs were executed, including and excluding COI sequences. The divergence estimates of the root node and internal nodes were significantly older for the dataset including mitochondrial sequence data. Hence, the mitochondrial data were discarded for our final divergence-dating analysis, and only the sequence information for single-copy nuclear genes was retained, providing identical gene sampling for inand outgroup taxa.

1. Wheeler WM (1907) The fungus-growing ants of North America. Bull Am Mus Nat Hist 23:669-807.
2. Kempf W (1963) A review of the ant genus Mycocepurus Forel, 1893 (Hymenoptera: Formicidae). Stud Entomol 6:417-432.
3. Kempf WW (1972) Catálogo abreviado das formigas da região Neotropical. Stud Entomol 15:3-344.
4. Weber NA (1972) Gardening Ants. The Attines (Memoirs Am Philos Soc, Philadelphia).
5. Brandão CRF (1991) Adendos ao catálogo abreviado das formigas da região Neotropical (Hymenoptera: Formicidae). Rev Bras Entomol 35:319-412.
6. Mackay WP, Maes JM, Rojas Fernández P, Luna G (2004) The ants of North and Central America: The genus Mycocepurus (Hymenoptera: Formicidae). J Insect Sci 4:27.
7. Rabeling C, Verhaagh M, Engels W (2007) Comparative study of nest architecture and colony structure of the fungus-growing ants, Mycocepurus goeldii and M. smithii. J Insect Sci 7:40.
8. Rabeling C, et al. (2009) Thelytokous parthenogenesis in the fungus-gardening ant Mycocepurus smithii (Hymenoptera: Formicidae). PLoS One 4:e6781.
9. Eidmann H (1936) Ökologisch-faunistische Studien an südbrasilianischen Ameisen. Arb Physiol Angew Entomol Berlin-Dahlem 3:81-114.
10. Fernández-Marín H, Zimmerman J, Wcislo W, Rehner S (2005) Colony foundation, nest architecture and demography of a basal fungus-growing ant, Mycocepurus smithii (Hymenoptera, Formicidae). J Nat Hist 39:1735-1743.
11. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365-386.
12. DeWoody JA, et al. (2004) Universal method for producing ROX-labeled size standards suitable for automated genotyping. Biotechniques 37:348-352.
13. Halkett F, Simon JC, Balloux F (2005) Tackling the population genetics of clonal and partially clonal organisms. Trends Ecol Evol 20:194-201.
14. Arnaud-Haond S, Duarte CM, Alberto F, Serrão EA (2007) Standardizing methods to address clonality in population studies. Mol Ecol 16:5115-5139.
15. Arnaud-Haond S, Belkhir K (2007) GENCLONE: A computer program to analyse genotypic data, test for clonality and describe spatial clonal organization. Mol Ecol Notes 7:15-17.
16. Pearcy M, Hardy O, Aron S (2006) Thelytokous parthenogenesis and its consequences on inbreeding in an ant. Heredity 96:377-382.
17. Rey O, et al. (March 31, 2011) Meiotic recombination dramatically decreased in thelytokous queens of the little fire ant and their sexually produced workers. Mol Biol Evol, 10.1093/molbev/msr082.
18. Balloux F, Lehmann L, de Meeûs T (2003) The population genetics of clonal and partially clonal diploids. Genetics 164:1635-1644.
19. De Meeûs T, Balloux F (2005) F-statistics of clonal diploids structured in numerous demes. Mol Ecol 14:2695-2702.
20. Lewis P, Zaykin D (2002) GDA (Genetic Data Analysis). http://hydrodictyon.eeb.uconn. edu/people/plewis/software.php.
21. Peakall R, Smouse PE (2006) GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288-295.
22. Jombart T, Pontier D, Dufour AB (2009) Genetic markers in the playground of multivariate analysis. Heredity 102:330-341.
23. Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genet 11: 94.
24. Nei M (1972) Genetic distance between populations. Am Nat 106:283-292.
25. Lessa EP (1990) Multidimensional analysis of geographic genetic structure. Syst Biol 39:242-252.
26. Novembre J, Stephens M (2008) Interpreting principal component analyses of spatial population genetic variation. Nat Genet 40:646-649.
27. Ross KG, Gotzek D, Ascunce MS, Shoemaker DDW (2010) Species delimitation: A case study in a problematic ant taxon. Syst Biol 59:162-184.
28. Heady R, Lucas J (2007) PERMAP: Perceptual MAPping Software (Univ of Louisiana at Lafayette). http://www.ucs.louisiana.edu/~rbh8900.
29. Schultz T (1993) Stalking the wild attine. Notes Undergr 8:7-10.
30. Rabeling C, Bacci M (2010) A new workerless inquiline in the Lower Attini (Hymenoptera: Formicidae), with a discussion of social parasitism in fungus-growing ants. Syst Entomol 35:379-392.
31. Schultz TR, Brady SG (2008) Major evolutionary transitions in ant agriculture. Proc Natl Acad Sci USA 105:5435-5440.
32. Wetterer JK, Schultz TR, Meier R (1998) Phylogeny of fungus-growing ants (Tribe Attini) based on mtDNA sequence and morphology. Mol Phylogenet Evol 9:42-47.
33. Martins J, Jr, et al. (2007) Nuclear mitochondrial-like sequences in ants: Evidence from Atta cephalotes (Formicidae: Attini). Insect Mol Biol 16:777-784.
34. Maddison DR, Maddison WP (2000) MacClade 4 (Sinauer, Sunderland, MA).
35. Ward PS, Brady SG, Fisher BL, Schultz TR (2010) Phylogeny and biogeography of dolichoderine ants: Effects of data partitioning and relict taxa on historical inference. Syst Biol 59:342-362.
36. Posada D, Crandall KA (2001) Selecting the best-fit model of nucleotide substitution. Syst Biol 50:580-601.
37. Posada D, Crandall KA (1998) MODELTEST: Testing the model of DNA substitution. Bioinformatics 14:817-818.
38. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572-1574.
39. Brown JM, Hedtke SM, Lemmon AR, Lemmon EM (2010) When trees grow too long: Investigating the causes of highly inaccurate Bayesian branch-length estimates. Syst Biol 59:145-161.
40. Marshall DC, Simon C, Buckley TR (2006) Accurate branch length estimation in partitioned Bayesian analyses requires accommodation of among-partition rate variation and attention to branch length priors. Syst Biol 55:993-1003.
41. Marshall DC (2010) Cryptic failure of partitioned Bayesian phylogenetic analyses: Lost in the land of long trees. Syst Biol 59:108-117.
42. Spinks PQ, Shaffer HB (2009) Conflicting mitochondrial and nuclear phylogenies for the widely disjunct Emys (Testudines: Emydidae) species complex, and what they tell us about biogeography and hybridization. Syst Biol 58:1-20.
43. Rambaut A, Drummond A (2007) Tracer v1.5. http://tree.bio.ed.ac.uk/software/tracer.
44. Newton MA, Raftery AE (1994) Approximate Bayesian inference with the weighted likelihood bootstrap. J R Stat Soc, B 56:3-48.
45. Suchard MA, Weiss RE, Sinsheimer JS (2001) Bayesian selection of continuous-time Markov chain evolutionary models. Mol Biol Evol 18:1001-1013.
46. ZwickI D (2006) Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. PhD dissertation (Univ of Texas at Austin). http://garli.googlecode.com.
47. Kass RE, Raftery AE (1995) Bayes factors. J Am Stat Assoc 90:773-795.
48. Nylander JAA, Ronquist F, Huelsenbeck JP, Nieves-Aldrey JL (2004) Bayesian phylogenetic analysis of combined data. Syst Biol 53:47-67.
49. Brown JM, Lemmon AR (2007) The importance of data partitioning and the utility of Bayes factors in Bayesian phylogenetics. Syst Biol 56:643-655.
50. Rabeling C, Brown JM, Verhaagh M (2008) Newly discovered sister lineage sheds light on early ant evolution. Proc Natl Acad Sci USA 105:14913-14917.
51. Brandley MC, Schmitz A, Reeder TW (2005) Partitioned Bayesian analyses, partition choice, and the phylogenetic relationships of scincid lizards. Syst Biol 54:373-390.
52. Drummond AJ, Nicholls GK, Rodrigo AG, Solomon W (2002) Estimating mutation parameters, population history and genealogy simultaneously from temporally spaced sequence data. Genetics 161:1307-1320.
53. Drummond AJ, Ho SYW, Phillips MJ, Rambaut A (2006) Relaxed phylogenetics and dating with confidence. PLoS Biol 4:e88.
54. Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214.
55. Brady SG, Schultz TR, Fisher BL, Ward PS (2006) Evaluating alternative hypotheses for the early evolution and diversification of ants. Proc Natl Acad Sci USA 103:18172-18177.
56. Grimaldi DA, Engel MS (2005) Evolution of the Insects (Cambridge Univ Press, New York).
57. Simon C, et al. (1994) Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann Entomol Soc Am 87:651-701.
58. Ward PS, Downie DA (2005) The ant subfamily Pseudomyrmecinae (Hymenoptera: Formicidae): Phylogeny and evolution of big-eyed arboreal ants. Syst Entomol 30: 310-335.
59. Abouheif E, Wray GA (2002) Evolution of the gene network underlying wing polyphenism in ants. Science 297:249-252.
60. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome coxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294-299.
61. Hasegawa E, Tinaut A, Ruano F (2002) Molecular phylogeny of two slave-making ants: Rossomyrmex and Polyergus (Hymenoptera: Formicidae). Ann Zool Fenn 39:267-271.
62. Artiss T, Schultz TR, Polhemus DA, Simon C (2001) Molecular phylogenetic analysis of the dragonfly genera Libellula, Ladona, and Plathemis (Odonata: Libellulidae) based on mitochondrial cytochrome oxidase I and 16S rRNA sequence data. Mol Phylogenet Evol 18:348-361.
63. Wetterer JK, Schultz TR, Meier R (1998) Phylogeny of fungus-growing ants (Tribe Attini) based on mtDNA sequence and morphology. Mol Phylogenet Evol 9:42-47.


Fig. S1. Phylogram of the fungus-growing ant genus Mycocepurus generated by a Bayesian analysis of three nuclear protein-coding genes and one mitochondrial gene. Bayesian posterior probabilities ( $\times 100$ ) (BPP) and ML bootstrap proportions (MLBP) are indicated as BPP/MLBP; values of BPP $=100$ or MLBP $=$ 100 are indicated by an asterisk. Relationships between 87 outgroup taxa are collapsed to better depict relationships among Mycocepurus species. (Scale bar, number of substitutions per site.)

Table S1. Mycocepurus smithii populations sampled across Latin America

| Country | State | Locality/population | Number of individuals | Number of queens | Number of workers | Number of unique genotypes | Number of colonies | Genotype: colony ratio | Genotype: individual ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Argentina | Chaco | Pampa del Indio | 5 | 0 | 5 | 1 | 1 | 1 | 0.2 |
| Argentina | Misiones | Iguazú National Park | 22 | 0 | 22 | 1 | 3 | 0.33 | 0.05 |
| Brazil | Amazonas | Caldeirão | 243* | 5 | 234 | 173 | 11 | 15.72 | 0.71 |
| Brazil | Amazonas | Manaus | 263 | 13 | 250 | 3 | 36 | 0.08 | 0.01 |
| Brazil | Amazonas | Parintins | 7 | 0 | 7 | 5 | 1 | 5 | 0.71 |
| Brazil | Amazonas | Reserva Ducke | 8 | 0 | 8 | 1 | 1 | 1 | 0.13 |
| Brazil | Amazonas | Santa Rita | 15 | 0 | 15 | 1 | 3 | 0.33 | 0.07 |
| Brazil | Amazonas | São Gabriel da Cachoeira | 8 | 0 | 8 | 8 | 1 | 8 | 1 |
| Brazil | Pará | Alter do Chão | 9 | 0 | 9 | 1 | 1 | 1 | 0.1 |
| Brazil | Pará | Belém | 25 | 0 | 25 | 24 | 3 | 8 | 0.96 |
| Brazil | Pará | Belterra | 22 | 0 | 22 | , |  | 0.5 | 0.09 |
| Brazil | São Paulo | Rio Claro | 390 | $138{ }^{+}$ | 252 | 2 | 59 | 0.03 | 0.01 |
| Costa Rica | Limón | Cahuita | 11 | 0 | 11 | 1 | 1 | 1 | 0.09 |
| Costa Rica | Guanacaste | Lomas Barbudal | 25 | 0 | 25 | 2 | 5 | 0.4 | 0.08 |
| Costa Rica | Limón | Limón | 28 | $10^{\ddagger}$ | 18 | 1 | 2 | 0.5 | 0.04 |
| Cuba |  | Cienfuegos | 20 | 0 | 20 | 1 |  | 0.5 | 0.05 |
| Guatemala | Peten | El Remate | 45 | 0 | 45 | 2 | 9 | 0.22 | 0.04 |
| Guatemala | Peten | Tikal | 15 | 0 | 15 | 1 | 3 | 0.33 | 0.07 |
| Guyana | PotaroSiparuni | Paramakatoi | 24 | 0 | 24 | 1 | 3 | 0.33 | 0.04 |
| Honduras | Copán | Copán Archeological Museum | 15 | 0 | 15 | 1 | 3 | 0.33 | 0.07 |
| Honduras | Copán | Copán Ruinas | 30 | 0 | 30 | 3 | 6 | 0.5 | 0.1 |
| Mexico | Chiapas | El Panchan | 30 | 0 | 30 | 4 | 6 | 0.67 | 0.13 |
| Mexico | Chiapas | Palenque | 10 | 0 | 10 | 2 | 2 | 1 | 0.2 |
| Mexico | Nuevo León | Monterrey | 50 | 0 | 50 | 1 | 6 | 0.17 | 0.02 |
| Mexico | Tamaulipas | El Encino | 35 | 0 | 35 | 1 | 5 | 0.2 | 0.03 |
| Nicaragua | Matagalpa | El Tuma | 25 | 0 | 25 | 1 | 5 | 0.2 | 0.04 |
| Panama | Bocas del Toro | Bocas del Toro | 33 | 0 | 33 | 1 | 4 | 0.25 | 0.03 |
| Panama | Colon | Ft. Sherman | 35 | 0 | 35 | 3 | 4 | 0.75 | 0.09 |
| Panama | Colon | Gamboa (breeding experiment) | 93 | $93^{5}$ | 0 | 1 | 2 | 0.5 | 0.01 |
| Panama | Colon | Gamboa | 20 | 0 | 20 | 2 | 1 | 2 | 0.1 |
| Peru | Cusco | Huacaria | 40 | 0 | 40 | 1 | 4 | 0.25 | 0.03 |
| Peru | Cusco | Pilcopata | 5 | 0 | 5 | 1 | 1 | 1 | 0.2 |
| Peru | Loreto | Explorama Lodge, Iquitos | 47 | 2 | 45 | 1 | 4 | 0.25 | 0.02 |
| Peru | Madre de Dios | CICRA, Los Amigos | 149 | 10 | 139 | 6 | 15 | 0.4 | 0.04 |
| Trinidad |  | Las Cuevas | 20 | 0 | 20 | 3 | 2 | 1.5 | 0.15 |
| Trinidad |  | Arena Dam | 20 | 0 | 20 | 1 | 2 | 0.5 | 0.05 |
| Trinidad |  | Pierreville | 20 | 0 | 20 | 1 | 1 | 1 | 0.05 |
| Trinidad |  | Simla Research Station | 18 | 1 | 17 | 3 | 2 | 1.5 | 0.17 |
| Venezuela | Aragua | Ocumare de la Costa | 40 | 0 | 40 | 5 | 8 | 0.63 | 0.13 |
| Venezuela | Aragua | Rio Cumboto | 10 | 0 | 10 | 3 | 2 | 1.5 | 0.3 |
| Total |  | 39 localities | 1,930 | 272 | 1,654 | 276 | 234 |  |  |

[^1]Table S2. Sample size, observed and expected heterozygosity, and inbreeding coefficient of multilocus genotypes and recombinant populations (indicated by bold and italicized font)

| Country | State | Locality/population | Clone | $n$ | $\mathrm{H}_{\text {。 }}$ | $\mathrm{H}_{\text {e }}$ | $F_{\text {IS }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Argentina | Chaco | Pampa del Indio | PampaA | 5 | 0.667 | 0.333 | -1 |
| Argentina | Misiones | Iguazú National Park | IguazuA [6] | 22 | 0.917 | 0.458 | -1 |
| Brazil | Amazonas | Caldeirão | $n / a$ | 243 (173) | 0.372 | 0.369 | -0.009 |
| Brazil | Amazonas | Manaus | ManausA | 5 | 0.667 | 0.333 | -1 |
|  |  |  | ManausB [6] | 5 | 0.917 | 0.458 | -1 |
|  |  |  | ManausC [7] | 253 | 0.417 | 0.208 | -1 |
| Brazil | Amazonas | Parintins | $n / a$ | 7 (5) | 0.650 | 0.398 | -0.773 |
| Brazil | Amazonas | Reserva Ducke | DuckeA [7] | 8 | 0.417 | 0.208 | -1 |
| Brazil | Amazonas | Santa Rita | RitaA | 15 | 0.667 | 0.333 | -1 |
| Brazil | Amazonas | São Gabriel da Cachoeira | $n / a$ | 8 (8) | 0.365 | 0.315 | -0.172 |
| Brazil | Pará | Alter do Chão | AlterA | 9 | 0.75 | 0.375 | -1 |
| Brazil | Pará | Belém | $n / a$ | 25 (24) | 0.451 | 0.466 | 0.034 |
| Brazil | Pará | Belterra | BelterraA | 17 | 0.417 | 0.208 | -1 |
|  |  |  | BelterraB | 5 | 0.667 | 0.333 | -1 |
| Brazil | São Paulo | Rio Claro | RioClaroA | 295 | 0.5 | 0.25 | -1 |
|  |  |  | RioClaroB | 95 | 0.5 | 0.25 | -1 |
| Costa Rica | Limón | Cahuita | CahuitaA | 11 | 0.333 | 0.167 | -1 |
| Costa Rica | Guanacaste | Lomas Barbudal | LomasA | 20 | 0.833 | 0.417 | -1 |
|  |  |  | LomasB | 5 | 0.75 | 0.375 | -1 |
| Costa Rica | Limón | Limón | LimonA | 28 | 0.583 | 0.292 | -1 |
| Cuba |  | Cienfuegos | CubaA [4] | 20 | 0.667 | 0.333 | -1 |
| Guatemala | Peten | El Remate | RemateA [1] | 35 | 0.417 | 0.208 | -1 |
|  |  |  | RemateB | 10 | 0.5 | 0.25 | -1 |
| Guatemala | Peten | Tikal | TikalA [1] | 15 | 0.417 | 0.208 | -1 |
| Guyana | Potaro-Siparuni | Paramakatoi | ParamakatoiA | 24 | 0.75 | 0.375 | -1 |
| Honduras | Copán | Copán Archeological Museum | MuseumA | 15 | 0.583 | 0.292 | -1 |
| Honduras | Copán | Copán Ruinas | CopanA | 9 | 0.25 | 0.125 | -1 |
|  |  |  | CopanB | 16 | 0.167 | 0.083 | -1 |
|  |  |  | CopanC | 5 | 0.5 | 0.25 | -1 |
| Mexico | Chiapas | El Panchan | PanchanA | 15 | 0.5 | 0.25 | -1 |
|  |  |  | PanchanB | 5 | 0.667 | 0.333 | -1 |
|  |  |  | PanchanC | 5 | 0.583 | 0.292 | -1 |
|  |  |  | Panchand | 5 | 0.5 | 0.25 | -1 |
| Mexico | Chiapas | Palenque | PalenqueA | 5 | 0.5 | 0.25 | -1 |
|  |  |  | Palenque ${ }^{\text {B }}$ | 5 | 0.417 | 0.208 | -1 |
| Mexico | Nuevo Leon | Monterrey | MonterreyA | 50 | 0.417 | 0.208 | -1 |
| Mexico | Tamaulipas | El Cielo | ElCieloA | 35 | 0.5 | 0.25 | -1 |
| Nicaragua | Matagalpa | El Tuma | EltumaA | 25 | 0.667 | 0.333 | -1 |
| Panama | Bocas del Toro | Bocas del Toro | BocasA | 33 | 0.333 | 0.167 | -1 |
| Panama | Colon | Ft. Sherman | ShermanA [5] | 10 | 0.583 | 0.292 | -1 |
|  |  |  | ShermanB | 15 | 0.583 | 0.292 | -1 |
|  |  |  | ShermanC [2] | 10 | 0.583 | 0.292 | -1 |
| Panama | Colon | Gamboa (breeding experiment) | GamboaA [5] | 93 | 0.583 | 0.292 | -1 |
| Panama | Colon | Gamboa | GamboaB [2] | 13 | 0.583 | 0.292 | -1 |
|  |  |  | GamboaC | 7 | 0.583 | 0.292 | -1 |
| Peru | Cusco | Huacaria | HuacariaA | 40 | 0.667 | 0.333 | -1 |
| Peru | Cusco | Pilcopata | PilcopataA | 5 | 0.667 | 0.333 | -1 |
| Peru | Loreto | Explorama Lodge, Iquitos | IquitosA | 47 | 0.5 | 0.375 | -1 |
| Peru | Madre de Dios | CICRA, Los Amigos | AmigosA | 23 | 0.833 | 0.417 | -1 |
|  |  |  | AmigosB | 6 | 0.75 | 0.375 | -1 |
|  |  |  | AmigosC | 22 | 0.75 | 0.375 | -1 |
|  |  |  | AmigosD | 41 | 0.75 | 0.375 | -1 |
|  |  |  | AmigosE | 18 | 0.75 | 0.375 | -1 |
|  |  |  | AmigosF | 39 | 0.75 | 0.375 | -1 |
| Trinidad |  | Las Cuevas | CuevasA | 10 | 0.25 | 0.125 | -1 |
|  |  |  | CuevasB [3] | 3 | 0.417 | 0.208 | -1 |
|  |  |  | CuevasC [8] | 7 | 0.5 | 0.25 | -1 |
| Trinidad |  | Arena Dam | ArenaDamA [3] | 20 | 0.417 | 0.208 | -1 |

Table S2. Cont.

| Country | Stat | Locality/population | Clone | $n$ | $\mathrm{H}_{\text {。 }}$ | $\mathrm{H}_{\mathrm{e}}$ | $F_{\text {IS }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Trinidad |  | Pierreville | PierrevilleA | 20 | 0.667 | 0.333 | -1 |
| Trinidad |  | Simla Research Station | SimlaA [4] | 2 | 0.667 | 0.333 | -1 |
|  |  |  | SimlaB | 8 | 0.583 | 0.292 | -1 |
|  |  |  | SimlaC [8] | 8 | 0.5 | 0.25 | -1 |
| Venezuela | Aragua | Ocumare de la Costa | OcumareA [3] | 5 | 0.417 | 0.208 | -1 |
|  |  |  | OcumareB | 5 | 0.583 | 0.292 | -1 |
|  |  |  | OcumareC | 5 | 0.5 | 0.25 | -1 |
|  |  |  | OcumareD | 21 | 0.667 | 0.333 | -1 |
|  |  |  | OcumareE | 4 | 0.75 | 0.375 | -1 |
| Venezuela | Aragua | Rio Cumboto | CumbotoA | 2 | 0.667 | 0.333 | -1 |
|  |  |  | CumbotoB | 3 | 0.667 | 0.333 | -1 |
|  |  |  | Cumbotoc | 5 | 0.75 | 0.375 | -1 |
| Total (asexual) |  |  |  | 1,647 | 0.589 | 0.671 | 0.123 |
| Total (sexual) |  |  |  | 283 | 0.387 | 0.458 | 0.154 |
| Total (sexual and asexual) |  |  |  | 1,930 | 0.430 | 0.545 | 0.210 |

Statistics are presented separately for each multilocus genotype in asexual populations. A total of eight identical multilocus genotypes is shared between colonies from different localities, which are indicated by numbers in square brackets. For recombinant populations, the number of multilocus genotypes is given in parentheses following the sample number; a single representative for each multilocus genotype was included to calculate the observed and expected heterozygosity and the inbreeding coefficient. $\mathrm{n} / \mathrm{a}$, not applicable.
©

 ~



 $\bar{\infty}$ \% g og g



















ค が 억スススススススススススススススオス প্তָ 유N U ※


 －
 Б亏

 $\stackrel{\square}{O}$
 ミミミ





 \＆

 ミ

 8



 within a single individual，is also consistent with the observed pattern．Future studies will have to explore this seemingly paradoxical result．



ォ ォ
$\qquad$
N
Ent
NANさNさN －
In the leftmost column，the number in parentheses following the caste／sex of the individual indicates the number of samples with the depicted genotype．Representative genotypes for a sexual population are


 brood；males are not known to occur in strictly asexual populations（8）．

| Species | Extraction code | Collector's code | Country | Sample locality | EF1- $\alpha$ F1 exon 1 | EF1- $\alpha$ F1 exon 2 | Wg exon 1 | LW Rh exon 1 | LW Rh exon 2 | COI | $\begin{gathered} \text { tRNA } \\ \text { Leu } \end{gathered}$ | COII |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| M. curvispinosus | M228 | UGM0950612 | Costa Rica | Parque Nacional Santa Rosa | JN054745 | JN054829 | JN055079 | JN054913 | JN054996 | JN055163 | n/a | n/a |
| M. curvispinosus | M285 | AGH010405-01 | Panama | Pipeline Rd. Km 6, Parque Nacional Soberanía | JN054746 | JN054830 | JN055080 | JN054914 | JN054997 | JN055164 | n/a | $\mathrm{n} / \mathrm{a}$ |
| M. curvispinosus | M286 | AGH010405-01 | Panama | Pipeline Rd. Km 6, Parque Nacional Soberanía | JN054747 | JN054831 | JN055081 | JN054915 | JN054998 | JN055165 | n/a | $\mathrm{n} / \mathrm{a}$ |
| M. curvispinosus | M296 | $\begin{aligned} & \text { E.Deulefent } \\ & \text { M2169 } \end{aligned}$ | Colombia | Villa Roca | JN054748 | JN054832 | JN055082 | JN054916 | JN054999 | JN055166 | n/a | n/a |
| M. curvispinosus | M317 | CR071221-09 | Costa Rica | Lomas Barbudal | JN054749 | JN054833 | JN055083 | JN054917 | JN055000 | JN055167 | n/a | $\mathrm{n} / \mathrm{a}$ |
| M. goeldii | M028 | CR050121-05 | Brazil | Pareci Novo, Rio Grande do Sul | JN054750 | JN054834 | JN055084 | JN054918 | JN055001 | JN055168 | n/a | $\mathrm{n} / \mathrm{a}$ |
| M. goeldii | M145 | MB050906-07 | Brazil | Rio Claro, São Paulo | JN054751 | JN054835 | JN055085 | JN054919 | JN055002 | JN055169 | n/a | n/a |
| M. goeldii | M241 | CR060903-01 | Brazil | Manaus, Amazonas | JN054752 | JN054836 | JN055086 | JN054920 | JN055003 | JN055170 | n/a | n/a |
| M. goeldii | M263 | CR060819-05 | Brazil | Alter do Chão, Pará | JN054753 | JN054837 | JN055087 | JN054921 | JN055004 | JN055171 | n/a | n/a |
| M. goeldii | M278 | ```J.Martins061011- 05``` | Brazil | Júlio de Castilhos, Rio Grande do Sul | JN054754 | JN054838 | JN055088 | n/a | $\mathrm{n} / \mathrm{a}$ | JN055172 | n/a | n/a |
| M. goeldii | M280 | R.Feitosa061001 | Brazil | Lizarda, Tocantins | JN054755 | JN054839 | JN055089 | JN054922 | JN055005 | JN055173 | n/a | n/a |
| M. goeldii | M281 | Dietz\&Silva041006 | Brazil | Ponte Alta do Bom Jesus, Tocantins | JN054756 | JN054840 | JN055090 | JN054923 | JN055006 | JN055174 | n/a | n/a |
| M. goeldii | M299 | CR070716-05 | Brazil | Brasília, Distrito Federal | JN054757 | JN054841 | JN055091 | JN054924 | JN055007 | JN055175 | n/a | n/a |
| M. goeldii | M307 | CR061002-02 | Brazil | Rio Claro, São Paulo | JN054758 | JN054842 | JN055092 | JN054925 | JN055008 | JN055176 | n/a | n/a |
| M. goeldii | M328 | UGM080921-01 | Brazil | Estação Ecológica do Panga, Minas Gerais | JN054759 | JN054843 | JN055093 | JN054926 | JN055009 | JN055177 | n/a | $\mathrm{n} / \mathrm{a}$ |
| M. goeldii | M329 | UGM080928-01 | Brazil | Piracanjuba, Goiás | JN054760 | JN054844 | JN055094 | JN054927 | JN055010 | JN055178 | n/a | n/a |
| M. goeldii | M330 | UGM080929-02 | Brazil | Jussara, Goiás | JN054761 | JN054845 | JN055095 | JN054928 | JN055011 | JN055179 | n/a | n/a |
| M. goeldii | M331 | UGM081003-01 | Brazil | Roadside nr. Cuiabá, Mato Grosso | JN054762 | JN054846 | JN055096 | JN054929 | JN055012 | JN055180 | n/a | n/a |
| M. goeldii | M333 | CR081003-01 | Brazil | Rio Claro, São Paulo | JN054763 | JN054847 | JN055097 | JN054930 | JN055013 | JN055181 | n/a | n/a |
| M. goeldii | M335 | CR081003-04 | Brazil | Rio Claro, São Paulo | JN054764 | JN054848 | JN055098 | JN054931 | JN055014 | JN055182 | n/a | n/a |
| M. goeldii | M337 | CR081002-02 | Brazil | Rio Claro, São Paulo | JN054765 | JN054849 | JN055099 | JN054932 | JN055015 | JN055183 | n/a | n/a |
| M. goeldii | M339 | CR081002-07 | Brazil | Rio Claro, São Paulo | JN054766 | JN054850 | JN055100 | JN054933 | JN055016 | JN055184 | n/a | n/a |
| M. goeldii | M340 | CR060831-12 | Brazil | Caldeirão, Amazonas | JN054767 | JN054851 | JN055101 | JN054934 | JN055017 | JN055185 | n/a | n/a |
| M. obsoletus | M243 | CR060906-02 | Brazil | Parintins, Amazonas | JN054768 | JN054852 | JN055102 | JN054935 | JN055018 | JN055186 | n/a | n/a |
| M. obsoletus | M249 | CR060906-03 | Brazil | Parintins, Amazonas | JN054769 | JN054853 | JN055103 | JN054936 | JN055019 | JN055187 | n/a | n/a |
| M. obsoletus | M255 | CR060813-04 | Brazil | Alter do Chão, Pará | JN054770 | JN054854 | JN055104 | JN054937 | JN055020 | JN055188 | n/a | n/a |
| M. obsoletus | M256 | CR060813-06 | Brazil | Alter do Chão, Pará | JN054771 | JN054855 | JN055105 | JN054938 | JN055021 | JN055189 | n/a | n/a |
| M. obsoletus | M260 | CR060816-06 | Brazil | Alter do Chão, Pará | JN054772 | JN054856 | JN055106 | JN054939 | JN055022 | JN055190 | n/a | n/a |
| M. obsoletus | M266 | CR060908-01 | Brazil | Maranhão, Amazonas | JN054773 | JN054857 | JN055107 | JN054940 | JN055023 | JN055191 | n/a | n/a |
| M. obsoletus | M300 | CR070717-01 | Brazil | Brasília, Distrito Federal | JN054774 | JN054858 | JN055108 | JN054941 | JN055024 | JN055192 | n/a | $\mathrm{n} / \mathrm{a}$ |
| M. obsoletus | M314 | SCC081112-01 | Brazil | Brasília, Distrito Federal | JN054775 | JN054859 | JN055109 | JN054942 | JN055025 | JN055193 | n/a | n/a |
| M. smithii | M070 | CR050318-03 | Cuba | Cienfuegos | JN054776 | JN054860 | JN055110 | JN054943 | JN055026 | JN055231 | JN055313 | JN055272 |
| M. smithii | M071 | CR050318-03 | Cuba | Cienfuegos | JN054777 | JN054861 | JN055111 | JN054944 | JN055027 | JN055194 | $\mathrm{n} / \mathrm{a}$ | n/a |

Table S5. Cont.

| Species | Extraction code | Collector's code | Country | Sample locality | EF1- $\alpha$ F1 exon 1 | EF1- $\alpha$ F1 exon 2 | Wg exon 1 | LW Rh exon 1 | LW Rh exon 2 | COI | tRNA <br> Leu | COII |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| M. smithii | M109 | CR040613-01 | Peru | Explorama Lodge, Iquitos | JN054778 | JN054862 | JN055112 | JN054945 | JN055028 | JN055232 | JN055314 | JN055273 |
| M. smithii | M110 | CR040613-02 | Peru | Explorama Lodge, Iquitos | JN054779 | JN054863 | JN055113 | JN054946 | JN055029 | JN055233 | JN055315 | JN055274 |
| M. smithii | M129 | UGM950107-07 | Trinidad | Simla Research Station | n/a | n/a | n/a | n/a | n/a | JN055234 | JN055316 | JN055275 |
| M. smithii | M131 | UGM950112-09 | Trinidad | Pierreville | n/a | n/a | n/a | n/a | n/a | JN055235 | JN055317 | JN055276 |
| M. smithii | M132 | UGM950114-08 | Trinidad | Arena Dam | JN054780 | JN054864 | JN055114 | JN054947 | JN055030 | JN055236 | JN055318 | JN055277 |
| M. smithii | M152 | UGM960116-01 | Panama | Canal Zone | n/a | n/a | n/a | n/a | n/a | JN055237 | JN055319 | JN055278 |
| M. smithii | M170 | UGM950616-01 | Costa Rica | Limón | n/a | n/a | n/a | n/a | n/a | JN055238 | JN055320 | JN055279 |
| M. smithii | M175 | TRS960416-12 | Guyana | Paramakatoi | JN054781 | JN054865 | JN055115 | JN054948 | JN055031 | JN055239 | JN055321 | JN055280 |
| M. smithii | M182 | TRS960428-22 | Panama | Ft. Sherman | JN054782 | JN054866 | JN055116 | JN054949 | JN055032 | JN055240 | JN055322 | JN055281 |
| M. smithii | M186 | TRS920821-17 | Brazil | São Gabriel da Cachoeira, Amazonas | n/a | n/a | n/a | n/a | n/a | JN055241 | JN055323 | JN055282 |
| M. smithii | M198 | UGM950110-02 | Trinidad | Las Cuevas | n/a | n/a | n/a | n/a | n/a | JN055242 | JN055324 | JN055283 |
| M. smithii | M218 | CR060627-07 | Mexico | El Encino, Tamaulipas | JN054783 | JN054867 | JN055117 | JN054950 | JN055033 | JN055243 | JN055325 | JN055284 |
| M. smithii | M226 | UGM030329-02 | Argentina | Iguazú National Park | JN054784 | JN054868 | JN055118 | JN054951 | JN055034 | JN055244 | JN055326 | JN055285 |
| M. smithii | M230 | UGM960116-01 | Panama | Gamboa | JN054785 | JN054869 | JN055119 | JN054952 | JN055035 | JN055195 | n/a | n/a |
| M. smithii | M264 | CR060820-03 | Brazil | Belterra, Pará | JN054786 | JN054870 | JN055120 | JN054953 | JN055036 | JN055245 | JN055327 | JN055286 |
| M. smithii | M267 | CR060908-04 | Brazil | Badajós, Amazonas | JN054787 | JN054871 | JN055121 | JN054954 | JN055037 | JN055246 | JN055328 | JN055287 |
| M. smithii | M268 | CR060909-01 | Brazil | Parintins, Amazonas | JN054788 | JN054872 | JN055122 | JN054955 | JN055038 | JN055247 | JN055329 | JN055288 |
| M. smithii | M275 | CR061011-03 | Brazil | Rio Claro, São Paulo | JN054789 | JN054873 | JN055123 | JN054956 | JN055039 | JN055248 | JN055330 | JN055289 |
| M. smithii | M276 | CR061013-10 | Brazil | Rio Claro, São Paulo | JN054790 | JN054874 | JN055124 | JN054957 | JN055040 | JN055196 | n/a | n/a |
| M. smithii | M279 | RRSilva041009 | Brazil | Aurora do Tocantins, Tocantins | JN054791 | JN054875 | JN055125 | JN054958 | JN055041 | JN055249 | JN055331 | JN055290 |
| M. smithii | M305 | G.Alpert020221 | St. Lucia | Gros Islet, Point du Cap | JN054792 | JN054876 | JN055126 | JN054959 | JN055042 | JN055250 | JN055332 | JN055291 |
| M. smithii | M318 | CR071221-05 | Costa Rica | Lomas Barbudal | JN054793 | JN054877 | JN055127 | JN054960 | JN055043 | JN055251 | JN055333 | JN055292 |
| M. smithii | M319 | CR071229-05 | Nicaragua | El Tuma | JN054794 | JN054878 | JN055128 | JN054961 | JN055044 | JN055252 | JN055334 | JN055293 |
| M. smithii | M320 | CR080103-01 | Honduras | Copán, Archeological Museum | JN054795 | JN054879 | JN055129 | JN054962 | JN055045 | JN055253 | JN055335 | JN055294 |
| M. smithii | M321 | CR080108-04 | Guatemala | El Remate | JN054796 | JN054880 | JN055130 | JN054963 | JN055046 | JN055254 | JN055336 | JN055295 |
| M. smithii | M322 | CR080109-01 | Guatemala | Tikal | JN054797 | JN054881 | JN055131 | JN054964 | JN055047 | JN055255 | JN055337 | JN055296 |
| M. smithii | M323 | CR080110-04 | Mexico | El Panchan, Chiapas | JN054798 | JN054882 | JN055132 | JN054965 | JN055048 | JN055256 | JN055338 | JN055297 |
| M. smithii | M324 | CR080111-02 | Mexico | El Panchan, Chiapas | JN054799 | JN054883 | JN055133 | JN054966 | JN055049 | JN055197 | n/a | n/a |
| M. smithii | M325 | CR080813-06 | Venezuela | Ocumare de la Costa | JN054800 | JN054884 | JN055134 | JN054967 | JN055050 | JN055257 | JN055339 | JN055298 |
| M. smithii | M326 | CR080815-01 | Venezuela | Parque Nacional Henri Pittier, Rio Cumboto | JN054801 | JN054885 | JN055135 | JN054968 | JN055051 | JN055258 | JN055340 | JN055299 |
| M. smithii | M341 | CR060831-10 | Brazil | Caldeirão, Amazonas | JN054802 | JN054886 | JN055136 | JN054969 | JN055052 | JN055259 | JN055341 | JN055300 |
| M. smithii | M342 | CR060925-02 | Brazil | Manaus, Amazonas | JN054803 | JN054887 | JN055137 | JN054970 | JN055053 | JN055260 | JN055342 | JN055301 |
| M. smithii | M343 | CR040528-03 | Peru | Pilcopata | JN054804 | JN054888 | JN055138 | JN054971 | JN055054 | JN055261 | JN055343 | JN055302 |
| M. smithii | M344 | CR040605-04 | Peru | CICRA, Los Amigos | JN054805 | JN054889 | JN055139 | JN054972 | JN055055 | JN055262 | JN055344 | JN055303 |
| M. smithii | M353 | CR060808-03 | Brazil | Belém, Pará | JN054806 | JN054890 | JN055140 | JN054973 | JN055056 | JN055263 | JN055345 | JN055304 |
| M. smithii | M354 | CR060814-03 | Brazil | Alter do Chão, Pará | JN054807 | JN054891 | JN055141 | JN054974 | JN055057 | JN055264 | JN055346 | JN055305 |

Table S5. Cont.

| Species | Extraction code | Collector's code | Country | Sample locality | EF1- $\alpha$ F1 exon 1 | EF1- $\alpha$ F1 exon 2 | Wg exon 1 | LW Rh exon 1 | LW Rh exon 2 | COI | tRNA <br> Leu | COII |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| M. smithii | M355 | S.Sanchez-01 | Mexico | Monterrey, Nuevo León | n/a | n/a | n/a | n/a | n/a | JN055265 | JN055347 | JN055306 |
| M. smithii | M356 | AGH020607-05 | Panama | Bocas del Toro | n/a | n/a | n/a | n/a | n/a | JN055266 | JN055348 | JN055307 |
| M. smithii | M357 | UGM030406-03 | Argentina | Pampa del Indio | n/a | n/a | n/a | n/a | n/a | JN055267 | JN055349 | JN055308 |
| M. smithii | M358 | CR080104-02 | Honduras | Copan Ruinas | n/a | n/a | n/a | n/a | n/a | JN055268 | JN055350 | JN055309 |
| M. smithii | M360 | TRS920816-07 | Brazil | Reserva Ducke, Manaus, Amazonas | n/a | n/a | n/a | n/a | n/a | JN055269 | JN055351 | JN055310 |
| M. smithii | M363 | CR060905-01 | Brazil | Santa Rita, Amazonas | n/a | n/a | n/a | n/a | n/a | JN055270 | JN055352 | JN055311 |
| M. smithii | M364 | CR040530-04 | Peru | Huacaria | n/a | n/a | n/a | n/a | n/a | JN055271 | JN055353 | JN055312 |
| M. tardus | M162 | UGM960125-01 | Panama | Pipeline Rd. Km6, Parque Nacional Soberanía | JN054808 | JN054892 | JN055142 | JN054975 | JN055058 | JN055198 | n/a | n/a |
| M. tardus | M173 | UGM950202-03 | Panama | Pipeline Rd. Km6, Parque Nacional Soberanía | JN054809 | JN054893 | JN055143 | JN054976 | JN055059 | JN055199 | n/a | n/a |
| M. tardus | M309 | UGM960202-02 | Panama | Pipeline Rd. Km6, Parque Nacional Soberanía | JN054810 | JN054894 | JN055144 | JN054977 | JN055060 | JN055200 | n/a | n/a |
| M. tardus | M310 | UGM960202-01 | Panama | Pipeline Rd. Km6, Parque Nacional Soberanía | JN054811 | JN054895 | JN055145 | JN054978 | JN055061 | JN055201 | n/a | n/a |
| M sp. nov. 1 | M250 | CR060906-05 | Brazil | Parintins, Amazonas | JN054812 | JN054896 | JN055146 | JN054979 | JN055062 | JN055202 | n/a | n/a |
| $M$ sp. nov. 1 | M251 | CR060906-09 | Brazil | Parintins, Amazonas | JN054813 | JN054897 | JN055147 | JN054980 | JN055063 | JN055203 | n/a | n/a |
| $M \mathrm{sp}$. nov. 1 | M252 | CR060906-07 | Brazil | Parintins, Amazonas | JN054814 | JN054898 | JN055148 | JN054981 | JN055064 | JN055204 | n/a | n/a |
| $M$ sp. nov. 2 | M245 | CR060915-01 | Brazil | Manaus, Amazonas | JN054815 | JN054899 | JN055149 | JN054982 | JN055065 | JN055205 | n/a | n/a |
| $M \mathrm{sp}$. nov. 2 | M246 | CR060919-05 | Brazil | Manaus, Amazonas | JN054816 | JN054900 | JN055150 | JN054983 | JN055066 | JN055206 | n/a | n/a |
| $M \mathrm{sp}$. nov. 3 | M095 | CR040603-1-4 | Peru | CICRA, Los Amigos | JN054817 | JN054901 | JN055151 | JN054984 | JN055067 | JN055207 | n/a | n/a |
| $M$ sp. nov. 3 | M102 | CR040608-03 | Peru | CICRA, Boca Amigos | JN054818 | JN054902 | JN055152 | JN054985 | JN055068 | JN055208 | n/a | n/a |
| $M \mathrm{sp}$. nov. 3 | M103 | CR040608-04 | Peru | CICRA, Boca Amigos | JN054819 | JN054903 | JN055153 | JN054986 | JN055069 | JN055209 | n/a | n/a |
| $M$ sp. nov. 3 | M117 | CR040615-01/06 | Peru | Explorama Lodge, Iquitos | JN054820 | JN054904 | JN055154 | JN054987 | JN055070 | JN055210 | n/a | n/a |
| M sp. nov. 3 | M135 | AGH030616-03 | Ecuador | Tiputini Biodiversity Station | JN054821 | JN054905 | JN055155 | JN054988 | JN055071 | JN055211 | n/a | n/a |
| M sp. nov. 3 | M136 | AGH030613-04 | Ecuador | Tiputini Biodiversity Station | JN054822 | JN054906 | JN055156 | JN054989 | JN055072 | JN055212 | n/a | n/a |
| $M$ sp. nov. 3 | M345 | CR040529-02 | Peru | Pilcopata | JN054823 | JN054907 | JN055157 | JN054990 | JN055073 | JN055213 | n/a | n/a |
| $M \mathrm{sp}$. nov. 4 | M153 | TRS960415-16 | Guyana | Paramakatoi | JN054824 | JN054908 | JN055158 | JN054991 | JN055074 | JN055214 | n/a | n/a |
| $M \mathrm{sp}$. nov. 4 | M311 | TRS960415-17 | Guyana | Paramakatoi | JN054825 | JN054909 | JN055159 | JN054992 | JN055075 | JN055215 | n/a | n/a |
| $M \mathrm{sp}$. nov. 4 | M312 | TRS960415-12 | Guyana | Paramakatoi | JN054826 | JN054910 | JN055160 | JN054993 | JN055076 | JN055216 | n/a | n/a |
| $M \mathrm{sp}$. nov. 4 | M313 | TRS960415-13 | Guyana | Paramakatoi | JN054827 | JN054911 | JN055161 | JN054994 | JN055077 | JN055217 | n/a | n/a |
| M sp. nov. 5 | M294 | A.Parente M713 | Colombia | Amacayacu National Park | JN054828 | JN054912 | JN055162 | JN054995 | JN055078 | JN055218 | n/a | n/a |

Outgroup taxa are listed in Schultz and Brady (31). Collection information can be requested from the first author.

Table S6. Sequence characteristics and best-fit models of sequence evolution as calculated by hLRTs and the AIC

| Gene | Number of sites | All taxa |  | Ingroup |  | hLRTs | AIC | Model <br> Bayesian | Model partitioned ML |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Variable sites | PI sites | Variable sites | PI sites |  |  |  |  |
| Global analysis |  |  |  |  |  |  |  |  |  |
| Ef1- $\alpha$ Exon1\&2 | 1,071 | 370 | 363 | 43 | 35 |  |  |  |  |
| Ef1- $\alpha$ Pos1\&2 | 714 | 37 | 34 | 1 | 1 | TIM+I+G | TIM+I+G | GTR+I+G | TIM $+1+\mathrm{G}$ |
| Ef1- $\alpha$ Pos3 | 357 | 333 | 329 | 42 | 33 | GTR+I+G | GTR+I+G | GTR+I+G | GTR+I+G |
| Wg Exon | 405 | 187 | 164 | 20 | 18 |  |  |  |  |
| Wg Pos1 | 135 | 36 | 21 | 0 | 0 | K80+G | TrNef+G | GTR+G | TrNef+G |
| Wg Pos2 | 135 | 19 | 15 | 1 | 1 | K80+G | K80+G | K80+G | K80+G |
| Wg Pos3 | 135 | 132 | 128 | 19 | 17 | HKY+G | GTR+G | GTR+G | GTR+G |
| LWR Exon1\&2 | 456 | 206 | 193 | 25 | 23 |  |  |  |  |
| LWR Pos1 | 152 | 56 | 50 | 10 | 10 | HKY+I+G | HKY+I+G | HKY+I+G | HKY+I+G |
| LWR Pos2 | 152 | 28 | 26 | 0 | 0 | GTR+G | GTR+G | GTR+G | GTR+G |
| LWR Pos3 | 152 | 122 | 117 | 15 | 13 | HKY+I+G | HKY+I+G | HKY+I+G | HKY+I+G |
| COI | 387 | 146 | 140 | 146 | 140 |  |  |  |  |
| COI Pos1\&2 | 258 | 30 | 28 | 30 | 28 | TrN+1+G | TIM+I+G | GTR+I+G | TIM $+1+\mathrm{G}$ |
| COI Pos3 | 129 | 116 | 112 | 116 | 112 | TrN+G | TrN+G | GTR+G | TrN+G |
| Total | 2,319 | 909 | 860 | 234 | 216 | n/a | $\mathrm{n} / \mathrm{a}$ | $\mathrm{n} / \mathrm{a}$ | n/a |
| Local analysis |  |  |  |  |  |  |  |  |  |
| COI-II + tRNA Leu | 1,515 | n/a | n/a | 248 | 169 |  |  |  |  |
| COI-II Pos1\&2 + tRNA Leu | 1,034 | n/a | n/a | 54 | 33 | HKY+I+G | TrN+I+G | GTR+I+G | TrN+I+G |
| COI-II Pos3 | 481 | n/a | n/a | 194 | 136 | TrN+G | TIM+I+G | GTR+I+G | TIM $+1+\mathrm{G}$ |
| Total | 1,515 | n/a | n/a | 248 | 169 | n/a | $\mathrm{n} / \mathrm{a}$ | $\mathrm{n} / \mathrm{a}$ | n/a |

"Model" columns indicate the models of sequence evolution implemented in the Bayesian and likelihood analyses. The global dataset consists of nuclear and mitochondrial DNA sequence data for 84 Mycocepurus ingroup taxa and 87 attine and myrmicine outgroup taxa. The local dataset consists exclusively of mitochondrial sequence data for 41 M . smithii individuals. PI , parsimony-informative.

Table S7. Microsatellite loci developed for the fungus-gardening ant species M. smithii

| Locus | Repeat motif | Primer ( $5^{\prime}-3{ }^{\prime}$ ) | $\mathrm{T}_{\mathrm{m}}\left({ }^{\circ} \mathrm{C}\right)$ | Multiple $\times$ | Dye | Size range | Number of alleles | GenBank accession number |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A5 | $(\mathrm{AC})_{14}$ | F: GAACTTCGACGTGTAATTCG | 56-57 | B | FAM | 238-256 | 12 | JN055219 |
|  |  | R: GCCACGGATAATTTCGAT |  |  |  |  |  |  |
| A6 | $(\mathrm{AC}){ }_{15}$ | F: CTCCTCCGGCTTTTCTCT | 56-57 | C | FAM | 101-123 | 12 | JN055220 |
|  |  | R: GATCGCGTACGGGTATATG |  |  |  |  |  |  |
| A9 | $(\mathrm{GT})_{13}$ | F: AACCTTCCCTTTGCGAAT | 56-57 | A | FAM | 135-165 | 10 | JN055221 |
|  |  | R: TATGTTTTGTGCCGTCGTTA |  |  |  |  |  |  |
| B1 | (TC) ${ }_{17}$ | F: GTGAGACGTGTTCGACGAG | 56-58 | D | HEX | 90-132 | 15 | JN055222 |
|  |  | R: GACTCGGAACCGACTTTCT |  |  |  |  |  |  |
| B4 | $(\mathrm{GC})_{8}$ | F: GATTTGCATACGTCTGTCTAGC | 56-57 | D | FAM | 205-207 | 2 | JN055223 |
|  |  | R: GCCTATTTCGTGTAAGGTAATG |  |  |  |  |  |  |
| C2 | $(\mathrm{TTG})_{6}-\mathrm{A}-(\mathrm{TTG})_{5}$ | F: CGCGTGATTCCTAGACAAC | 56-57 | D | FAM | 230-242 | 5 | JN055224 |
|  |  | R: AACGTGAGTCAGAACAATACG |  |  |  |  |  |  |
| C6 | (TTG) ${ }_{6}$-TTA-(TTG) ${ }_{4}$ | F: ACCAGGTTACAGGCGTAGAT | 56-57 | B | HEX | 237-271 | 11 | JN055225 |
|  |  | R: CGATACCATCACCACGACTA |  |  |  |  |  |  |
| C104 | $(C A A) 8$ | F: CGTCTACCAGTTCTGATTGC | 56-57 | C | FAM | 204-225 | 8 | JN055226 |
|  |  | R: ATCTGACATTTTGTCCAACG |  |  |  |  |  |  |
| C119 | $(\mathrm{CAG})_{4}$-(CAA) $8^{-}$ | F: CGATTCTACATCGATTCTGCR | 56-57 | B | FAM | 111-135 | 9 | JN055227 |
|  | $(\mathrm{ATC})_{3}$ | R: ATCTGACATTTTGTCCAACG |  |  |  |  |  |  |
| D8 | $(\mathrm{CAT})_{11}-(\mathrm{CGT})_{5}$ | F: CGGACATGTTCTTCGAGAT | 56-57 | D | HEX | 159-189 | 10 | JN055228 |
|  |  | R: CGCGACCTTTGAAAGTAGAT |  |  |  |  |  |  |
| D11 | $(\mathrm{GAT})_{10}{ }^{-\mathrm{GAC}}$-(GAT) ${ }_{4}$ | F: ACTTCGTTCCTCCATCTTCC | 56-57 | C | FAM | 285-294 | 4 | JN055229 |
|  |  | R: CGCATCATCAGTTTGTTCAC |  |  |  |  |  |  |
| D117 | (TCA) 27 | F: GATGTCATAGCAGGGCATTA | 56-57 | A | FAM | 196-242 | 8 | JN055230 |
|  |  | R: TGTCGCGTTGTGTGTCTAT |  |  |  |  |  |  |

[^2]Table S8. Primers used for PCR amplification and DNA sequencing

| Primer | Sequence ( $5^{\prime}-3{ }^{\prime}$ ) | Position | Source |
| :---: | :---: | :---: | :---: |
| EF1- ${ }^{\text {F1 }}$ copy |  |  |  |
| F1-494F | AAGGAGGCTCAGGAGATGGG | Apis 494-513 | (31) |
| F1-1044R | CGTCTTACCATCGGCATTGCC | Apis 1044-1019 | (31) |
| F1-792F | TTGGCGTGAAGCAGCTGATCG | Apis 792-812 | (31) |
| F1-1189R | ACCTGGTTTYAAGATRCCGGT | Apis 1189-1169 | (31) |
| F1-1109F | CCGCTTCAGGATGTCTATAA | Apis 1109-1128 | (31) |
| F1-1551R | CCGCGTCTCAGTTCYTTTAC | Apis 1551-1532 | (31) |
| F1-1424F | GCGCCKGCGGCTCTCACCACCGAGG | Apis 1424-1448 | (55) |
| F1-1829R | GGAAGGCCTCGACGCACATMGG | Apis 1829-1808 | (55) |
| Wg |  |  |  |
| MycoWg578F | TGCACGGTGAAGACTTGCTGGATGCG | Pheidole 578-603 | Modified from ref. 58 |
| Wg1032R | ACYTCGCAGCACCARTGGAA | Pheidole 1032-1013 | (59) |
| LW Rh |  |  |  |
| LR143F | ACAAAGTGCCACCGGAGATGCT | Apis 144-165 | Modified from ref. 58 |
| MycoLR639ER | CTTACCGGTTTCCATCCGAACA | Apis ~639-624 | Modified from ref. 58 |
| COI-II |  |  |  |
| LCO1490 | GGTCAACAAATCATAAAGATATTGG | D. yakuba 1490-1515 | (60) |
| HCO2198 | TGATTTTTTGGTCACCCTGAAGTTTA | D. yakuba 2198-2223 | (60) |
| Cl 13 | ATAATTTTTTTTATAGTTATACC | Apis 2002-2025 | (61) |
| Cl14 | ATTTCTTTTTTTCCTCTTTC | Apis 2549-2568 | (61) |
| MycoJerry | CAACAYYTATTTTGATTTTTTGG | Apis ~2181-2203 | Modified from ref. 57 |
| MycoBen | CAYGAYACHTATTATGTAGTRGC | Apis ~2613-2591 | Modified from ref. 62 |
| MycoGeorge | ATACCTCGTCGATATTCTGA | D. yakuba 2773-2792 | Modified from ref. 63 |
| Marilyn | TCATAAGTTCARTATCATTG | D. yakuba 3364-3383 | (63) |
| Lewis | TATTATTTGRGARTCCCTCT | Apis ~2660-2679 | This study |

Position numbers correspond to Apis mellifera GenBank accession number X52884 (EF1- $\alpha$ F1), Pheidole morrisi GenBank accession number AY101369.1 (Wg), A. mellifera GenBank accession number U26026 (LW Rh), Drosophila yakuba GenBank accession number X03240 (COI and COII), and the A. mellifera nucleotide position given in ref. 57 (COI). For all genes, the PCR product was amplified directly from the DNA extract.


[^0]:    Author contributions: C.R. designed research; C.R. and O.G. performed research; C.R., T.R.S., M.B., M.V.B.G., M.V., H.D.I., and U.G.M. contributed new reagents/analytic tools; C.R. and T.R.S. analyzed data; C.R., O.G., T.R.S., M.B., M.V.B.G., M.V., H.D.I., and U.G.M. revised the manuscript; and C.R. wrote the paper.

    The authors declare no conflict of interest.
    This article is a PNAS Direct Submission.
    Data deposition: DNA sequences reported in this paper have been deposited in the GenBank database (accession nos. JN054745-JN055353).
    ${ }^{1}$ To whom correspondence should be addressed. E-mail: crabeling@gmail.com.
    This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. 1073/pnas.1105467108/-/DCSupplemental.

[^1]:    Number of individuals describes the sample total including queens and workers. Number of unique genotypes is the number of unique multilocus genotypes. Number of colonies corresponds to either the number of nest entrances or the number of chambers from which individuals were collected. The genotype:colony ratio describes the ratio between the number of genotypes and the number of sampled colonies (SI Materials and Methods). The genotype:individual ratio describes the ratio between the number of genotypes and the number of sampled individuals. A value of the genotype:individual ratio approaching 0 describes genetic uniformity within a colony; a value of 1 describes sexual reproduction under random mating. Recombining populations are italicized and highlighted in bold.
    *Number of individuals includes the number of male mates estimated from the spermatheca content extracted and genotyped from four queens.
    ${ }^{\dagger}$ A total of 12 of the 138 queens were reproductively active; the remaining 126 individuals were queen larvae.
    ${ }^{ \pm}$All 10 queens were alates emerging from the maternal colony and were not reproductively active at the time of collection.
    ${ }^{\S}$ All queens were raised in six consecutive generations in a breeding experiment in laboratory colonies and represent offspring from two colonies initially collected in close proximity in Gamboa, Panama.

[^2]:    $T_{m}$ is the optimal annealing temperature. Loci were amplified in four multiplexed PCR reactions (A-D). The number of alleles and the size range were determined from genotyping 1,930 individuals from 39 localities in Latin America. Clone sequences were deposited in GenBank under the accession numbers given. F, forward; R, reverse. HEX, hexachlorofluorescein; FAM, carboxyfluorescein.

